

An integrable case of the p + ip pairing Hamiltonian interacting with its environment

Inna Lukyanenko, Phillip Isaac, Jon Links

Centre for Mathematical Physics, School of Mathematics and Physics, The University of Queensland

The pairing model interacting with its environment

Let $c_{\mathbf{k}}, c_{\mathbf{k}}^{\dagger}$ denote the annihilation and creation operators, $\mathbf{k} = (k_x, k_y)$:

$$\{c_{\mathbf{k}}, c_{\mathbf{k}'}\} = \{c_{\mathbf{k}}^{\dagger}, c_{\mathbf{k}'}^{\dagger}\} = 0, \ \{c_{\mathbf{k}}, c_{\mathbf{k}'}^{\dagger}\} = \delta_{\mathbf{k}\mathbf{k}'}I.$$

▶ The **isolated** *p* + *ip* pairing Hamiltonian:

$$H_{0} = \sum_{\mathbf{k}} \frac{|\mathbf{k}|^{2}}{2m} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} - \frac{G}{4m} \sum_{\mathbf{k} \neq \pm \mathbf{k}'} (k_{x} + ik_{y}) (k_{x}' - ik_{y}') c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger} c_{-\mathbf{k}'} c_{\mathbf{k}'}.$$

The pairing model interacting with its environment

Let $c_{\mathbf{k}}, c_{\mathbf{k}}^{\dagger}$ denote the annihilation and creation operators, $\mathbf{k} = (k_x, k_y)$:

$$\{c_{\mathbf{k}}, c_{\mathbf{k}'}\} = \{c_{\mathbf{k}}^{\dagger}, c_{\mathbf{k}'}^{\dagger}\} = 0, \ \{c_{\mathbf{k}}, c_{\mathbf{k}'}^{\dagger}\} = \delta_{\mathbf{k}\mathbf{k}'}I.$$

The isolated p + ip pairing Hamiltonian:

$$H_{0} = \sum_{\mathbf{k}} \frac{|\mathbf{k}|^{2}}{2m} c_{\mathbf{k}}^{\dagger} c_{\mathbf{k}} - \frac{G}{4m} \sum_{\mathbf{k} \neq \pm \mathbf{k}'} (k_{x} + ik_{y}) (k_{x}' - ik_{y}') c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger} c_{-\mathbf{k}'} c_{\mathbf{k}'}.$$

• Consider this Hamiltonian with an **extra term**:

$$H = H_0 + \frac{\Gamma}{2} \sum_{\mathbf{k}} \left((k_x + ik_y) c_{\mathbf{k}}^{\dagger} c_{-\mathbf{k}}^{\dagger} + (k_x - ik_y) c_{-\mathbf{k}} c_{\mathbf{k}} \right).$$

The extra term can be interpreted as creation and annihilation of pairs of fermions, resulting from **interaction with the environment**.

Н	Outline	BQISM	IM	

Reformulation in terms of spin operators

Set $z_{\mathbf{k}} = |\mathbf{k}|$, $k_x + ik_y = |\mathbf{k}|\exp(i\phi_{\mathbf{k}})$. Introduce the spin operators

$$S_{\mathbf{k}}^{+} = \exp(i\phi_{\mathbf{k}})c_{\mathbf{k}}^{\dagger}c_{-\mathbf{k}}^{\dagger}, \ S_{\mathbf{k}}^{-} = \exp(-i\phi_{\mathbf{k}})c_{-\mathbf{k}}c_{\mathbf{k}}, \ S_{\mathbf{k}}^{z} = c_{\mathbf{k}}^{\dagger}c_{-\mathbf{k}}^{\dagger}c_{-\mathbf{k}}c_{\mathbf{k}} - \frac{1}{2}.$$

They satisfy $\mathfrak{su}(2)$ commutation relations

$$[S_{\mathbf{k}}^{z}, S_{\mathbf{k}}^{\pm}] = \pm S_{\mathbf{k}}^{\pm}, \ [S_{\mathbf{k}}^{+}, S_{\mathbf{k}}^{-}] = 2S_{\mathbf{k}}^{z}.$$

Restricting to paired states and using integers $k = 1, ..., \mathcal{L}$ to enumerate the pairs $(\mathbf{k}, -\mathbf{k})$ we can rewrite (m = 1):

$$H_{0} = \sum_{k=1}^{\mathcal{L}} z_{k}^{2} S_{k}^{z} - G \sum_{k=1}^{\mathcal{L}} \sum_{j \neq k} z_{k} z_{j} S_{k}^{+} S_{j}^{-}$$

and

$$H = H_0 + \Gamma \sum_{k=1}^{\mathcal{L}} z_k \left(S_k^+ + S_k^- \right)$$

Summary and outline

Isolated pairing model (H₀) [Ibañez, Links, Sierra, Zhao 2009]

- integrable by the Quantum Inverse Scattering Method (QISM) using the trigonometric solution of the Yang-Baxter Equation (YBE),
- exhibits $\mathfrak{u}(1)$ -symmetry: $[H_0, S^z] = 0$, where $S^z = \sum_{k=1}^{\mathcal{L}} S_k^z$,
- solved by the Algebraic Bethe Ansatz (ABA).

Summary and outline

Isolated pairing model (H₀) [Ibañez, Links, Sierra, Zhao 2009]

- integrable by the Quantum Inverse Scattering Method (QISM) using the trigonometric solution of the Yang-Baxter Equation (YBE),
- exhibits $\mathfrak{u}(1)$ -symmetry: $[H_0, S^z] = 0$, where $S^z = \sum_{k=1}^{\mathcal{L}} S_k^z$,
- solved by the Algebraic Bethe Ansatz (ABA).

This talk: model interacting with its environment (H)

- integrable by the Boundary QISM (BQISM) using the rational solution of the YBE and one of the K-matrices being non-diagonal,
- \blacktriangleright no longer exhibits $\mathfrak{u}(1)\text{-symmetry} \Rightarrow \mathsf{ABA}$ is not obviously applicable,
- solved using the Off-Diagonal Bethe Ansatz (ODBA).

Summary and outline

Isolated pairing model (H₀) [Ibañez, Links, Sierra, Zhao 2009]

- integrable by the Quantum Inverse Scattering Method (QISM) using the trigonometric solution of the Yang-Baxter Equation (YBE),
- exhibits $\mathfrak{u}(1)$ -symmetry: $[H_0, S^z] = 0$, where $S^z = \sum_{k=1}^{\mathcal{L}} S_k^z$,
- solved by the Algebraic Bethe Ansatz (ABA).

This talk: model interacting with its environment (H)

- integrable by the Boundary QISM (BQISM) using the rational solution of the YBE and one of the K-matrices being non-diagonal,
- ▶ no longer exhibits $\mathfrak{u}(1)$ -symmetry \Rightarrow ABA is not obviously applicable,
- solved using the Off-Diagonal Bethe Ansatz (ODBA).

arXiv:1507.04068 (16 Jul 2015)

		Outline	BQISM	IM	
1.2	1.1				

Key ingredients

The Hilbert space of states

$$\mathcal{H} = \bigotimes_{j=1}^{\mathcal{L}} V_j = V^{\otimes \mathcal{L}}$$
, where $V = \mathbb{C}^2$ spin-1/2 rep. space of $\mathfrak{su}(2)$.

▶ The rational *R*-matrix $(\eta \in \mathbb{C}, P(u \otimes v) = v \otimes u, \forall u, v \in V)$

$$R(u) = uI \otimes I + \eta P = \begin{pmatrix} u + \eta & 0 & 0 & 0 \\ 0 & u & \eta & 0 \\ 0 & \eta & u & 0 \\ 0 & 0 & 0 & u + \eta \end{pmatrix} \in End(V \otimes V)$$

satisfies $R_{12}(u-v)R_{13}(u)R_{23}(v) = R_{23}(v)R_{13}(u)R_{12}(u-v)$.

• The Lax operator $(V_a = V \text{ is the auxiliary space})$

$$L_{aj}(u) = I + \frac{\eta}{u} \begin{pmatrix} S_j^z & S_j^- \\ S_j^+ & -S_j^z \end{pmatrix} = \frac{1}{u} R_{aj}(u - \eta/2) \in \operatorname{End}(V_a \otimes V_j)$$

satisfies $R_{ab}(u - v) L_{aj}(u) L_{bj}(v) = L_{bj}(v) L_{aj}(u) R_{ab}(u - v).$

BQISM [Sklyanin 1988]

▶ **Reflection equations** ($K^{\pm}(u) \in \text{End}(V)$, $\mathcal{R}(u) = R(-u - 2\eta)$):

$$\begin{cases} R_{12}(u-v)K_{1}^{-}(u)R_{21}(u+v)K_{2}^{-}(v) = K_{2}^{-}(v)R_{12}(u+v)K_{1}^{-}(u)R_{21}(u-v), \\ R_{12}(v-u)K_{1}^{+}(u)R_{21}(u+v)K_{2}^{+}(v) = K_{2}^{+}(v)R_{12}(u+v)K_{1}^{+}(u)R_{21}(v-u), \end{cases}$$

• Consider the following *K*-matrices $(\xi^{\pm}, \phi, \psi \in \mathbb{C})$:

$$\begin{split} & K^{-}(u) = \begin{pmatrix} \xi^{-} + u - \eta/2 & 0 \\ 0 & \xi^{-} - u + \eta/2 \end{pmatrix}, \\ & K^{+}(u) = \begin{pmatrix} \xi^{+} + u + \eta/2 & \psi(u + \eta/2) \\ \phi(u + \eta/2) & \xi^{+} - u - \eta/2 \end{pmatrix}. \end{split}$$

► The transfer matrix \in End(\mathcal{H}) $t(u) = \operatorname{tr}_{a} \left(K_{a}^{+}(u) L_{a\mathcal{L}}(u - \varepsilon_{\mathcal{L}}) ... L_{a1}(u - \varepsilon_{1}) K_{a}^{-}(u) L_{a1}(u + \varepsilon_{1}) ... L_{a\mathcal{L}}(u + \varepsilon_{\mathcal{L}}) \right)$

satisfies $[t(u), t(v)] = 0 \quad \forall u, v \in \mathbb{C} \Rightarrow$ can be used as a generating function for the conserved operators.

Constructing the conserved operators

Take the quasi-classical limit to construct the conserved operators:

$$\lim_{u\to\varepsilon_j}(u-\varepsilon_j)t(u)=\eta^2\tau_j+o(\eta^2).$$

Condition: for it to be well-defined the K-matrices have to satisfy

$$K^+(u)K^-(u) \to f(u)I$$
 as $\eta \to 0.$ (†)

Assume that parameters depend on η as follows:

$$\xi^+ = \xi + \eta \alpha, \quad \xi^- = -\xi + \eta \beta, \quad \psi = \eta \gamma, \quad \phi = \eta \lambda$$

Then (†) is satisfied and the **conserved operators** are

$$\begin{aligned} \tau_j^* &= \sum_{k \neq j}^{\mathcal{L}} \frac{4\varepsilon_j^2}{\varepsilon_j^2 - \varepsilon_k^2} S_j^z S_k^z + \sum_{k \neq j}^{\mathcal{L}} \frac{2\varepsilon_j \varepsilon_k}{\varepsilon_j^2 - \varepsilon_k^2} (S_j^+ S_k^- + S_j^- S_k^+) + \\ &+ 2(\alpha + \beta) S_j^z + \gamma \varepsilon_j S_j^+ - \lambda \varepsilon_j S_j^-. \end{aligned}$$

	Outline	BQISM	IM	Н	

Constructing the Hamiltonian

$$\begin{split} \sum_{j=1}^{\mathcal{L}} \varepsilon_j^{-2} \tau_j^* &= -2 \sum_{j,k:j < k} \varepsilon_j^{-1} \varepsilon_k^{-1} (S_j^+ S_k^- + S_j^- S_k^+) + 2(\alpha + \beta) \sum_{j=1}^{\mathcal{L}} \varepsilon_j^{-2} S_j^z + \\ &+ \gamma \sum_{j=1}^{\mathcal{L}} \varepsilon_j^{-1} S_j^+ - \lambda \sum_{j=1}^{\mathcal{L}} \varepsilon_j^{-1} S_j^- \equiv \mathcal{H}'. \end{split}$$

Making the change of variable $z_j = \varepsilon_j^{-1}$ we obtain

$$H' = 2(\alpha + \beta) \sum_{j=1}^{\mathcal{L}} z_j^2 S_j^z - 2 \sum_{j,k:j < k} z_j z_k (S_j^+ S_k^- + S_j^- S_k^+) + \gamma \sum_{j=1}^{\mathcal{L}} z_j S_j^+ - \lambda \sum_{j=1}^{\mathcal{L}} z_j S_j^-.$$

Set $\gamma = -\lambda$. Then $H = \frac{1}{2}GH'$ with $\alpha + \beta = G^{-1}$ and $\gamma = 2\Gamma G^{-1}$:

$$H = \sum_{k=1}^{\mathcal{L}} z_k^2 S_k^z - G \sum_{k=1}^{\mathcal{L}} \sum_{j \neq k} z_k z_j S_k^+ S_j^- + \Gamma \sum_{k=1}^{\mathcal{L}} z_k \left(S_k^+ + S_k^- \right)$$

The energy spectrum

[Cao, Yang, Shi, Wang 2013]: **Off-Diagonal Bethe Ansatz (ODBA)** (a method of solution for models where u(1) symmetry is broken). [Hao, Cao, Yang, Yang 2015]: ODBA applied to the XXX Gaudin model. Utilising this result we obtain

the eigenvalues of the Hamiltonian H (the energy spectrum)

$$E = (1+G)\sum_{i=1}^{\mathcal{L}} y_i - \frac{1}{2}\sum_{j=1}^{\mathcal{L}} z_j^2 + \Gamma^2 G^{-1} \sum_{i=1}^{\mathcal{L}} \frac{\prod_{j=1}^{\mathcal{L}} (1-y_i z_j^{-2})}{\prod_{k\neq i}^{\mathcal{L}} (1-y_i y_k^{-1})}$$

• subject to the **Bethe Ansatz Equations** $(k = 1, ..., \mathcal{L})$

$$1 + G^{-1} + \sum_{i \neq k}^{\mathcal{L}} \frac{2y_i}{y_i - y_k} - \sum_{l=1}^{\mathcal{L}} \frac{z_l^2}{y_k - z_l^2} = -\Gamma^2 G^{-2} \frac{1}{y_k} \frac{\prod_{l=1}^{\mathcal{L}} (1 - y_k z_l^{-2})}{\prod_{i \neq k}^{\mathcal{L}} (1 - y_k y_i^{-1})}$$

	Outline	BQISM	IM	Е

Thank you for your attention!

An integrable case of the p + ip pairing Hamiltonian interacting with its environment, arXiv:1507.04068 (16 Jul 2015)