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Abstract

Richardson—Gaudin models are a class of quantum integrable models connected to
many physical systems, including pairing Hamiltonians from the theory of superconduc-
tivity. They can be obtained in the quasi-classical limit of the Quantum Inverse Scattering
Method, which is based on an R-matrix and a Lax operator satisfying the Yang-Baxter
equation. They can also be obtained from the Boundary Quantum Inverse Scattering
Method, which relies on solutions of the reflection equations known as K-matrices. In
this thesis we study these latter models systematically, explore the connections between

them and investigate the interpretation of the “boundary”.

First of all, we consider Richardson-Gaudin models obtained from the spin-1/2 su(2)
Boundary Quantum Inverse Scattering Method with diagonal K-matrices. We prove that
the trigonometric boundary construction is equivalent to its rational limit, through a
change of variables, rescaling, and a basis transformation. Moreover, we prove that the
twisted-periodic and boundary constructions are equivalent in the trigonometric case, but
not in the rational limit. Thus, including the “boundary” does not lead to a new model

in this case.

Next, we investigate Richardson-Gaudin models obtained from the spin-1/2 su(2)
Boundary Quantum Inverse Scattering Method with non-diagonal K-matrices. Here the
situation is different. The conserved operators in the boundary construction are no longer
equivalent to the ones in the twisted-periodic construction. Also, the rational and the
trigonometric boundary constructions are not equivalent. In the rational case this allows
us to construct a generalisation of the p+ip pairing Hamiltonian with external interaction
terms. In the trigonometric case the expressions for the conserved operators involve
several free parameters, which can be adjusted to construct a variety of Hamiltonians.

This result offers opportunities for future investigations.

Finally, we study the case of the ¢-deformed bosonic Lax operator. This case is much
more challenging than the case of the spin Lax operator. It is not straightforward to
define the rational and quasi-classical limits of the bosonic Lax operator. Even after
making modifications to the Lax operator for these limits to be well defined, it turns out

that the limits do not commute. We state some open questions for future work.
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CHAPTER 1

Introduction

Quantum integrability continues to be a fruitful area of research on the border between
mathematics and physics. In mathematics it has led to the development of many new
algebraic structures, such as quantum groups [Jim85| [Dri87]. In physics, it has found mul-
tiple applications, e.g., in the study of ultrasmall superconducting grains [DS00L SDD™00),
vDRO1], nuclear physics [DPS04], cold atoms |[GBLZ0S], quantum optics |[Garll] and
quantum information [YNO5, [CW0S, [Tsal0).

In classical Hamiltonian mechanics, a system is said to be integrable if the number
of independent conserved quantities is equal to the number of degrees of freedom of the
system. If the number of independent conserved quantities is greater than the number of
degrees of freedom of the system, a system is said to be superintegrable. In the case of
a quantum system the definition of integrability is not as straightforward. For instance,
the number of degrees of freedom is not always clearly determined. There are several
approaches to quantum integrability (discussed in [CM11] and [Lar13]), but as yet there

is no universally accepted definition.

We work in the context of the Yang-Bazter integrability, i.e., we refer to a model as
quantum integrable if it can be constructed via the Quantum Inverse Scattering Method
(QISM). The QISM is a powerful mathematical technique for the construction and solution
of quantum integrable models, which was developed in the late 1970s in Leningrad by
Faddeev, Kulish, Sklyanin, Takhtadzhan and others ([TF79, [KS79, [KS82| [Fad95, [Fad96]).
The key ingredients of the QISM are an R-matriz, which is a solution of the Yang-Bazter
equation [BaxT72, Yan67], and a Laz operator satisfying the RLL relation (a version of
the Yang—Baxter equation) together with the R-matrix. These ingredients are used to
construct a one-parameter family of commuting transfer matrices, which in turn generate

a set of mutually commuting conserved operators, including the Hamiltonian of the model.
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An exactly solvable model is a model for which the eigenvalues and the eigenstates of
the Hamiltonian can be exactly determined. In 1931 Bethe developed a method (that
now goes under the name of the co-ordinate Bethe Ansatz) for deriving the exact solution
of the Heisenberg XXX spin chain [Bet31]. The method turns the problem of finding the
spectrum of the Hamiltonian into solving a system of coupled equations, referred to as
the Bethe Ansatz Fquations (BAE). Subsequently this method was developed further by
others and various forms of it appeared. We will predominantly use the algebraic form,
called the algebraic Bethe Ansatz, which was developed in parallel with and incorporated
into the QISM. In Chapter [4] we will also use the recently developed off-diagonal Bethe
Ansatz method [WYCS15].

In this thesis we study Richardson—Gaudin models, which came to prominence in some
part due to connections with pairing Hamiltonians from the BCS theory of superconduc-
tivity (Bardeen, Cooper and Schrieffer in 1957 [BCS57]). In 1963 Richardson announced
an exact solution of the reduced BCS Hamiltonian, also known as the s-wave pairing
Hamiltonian [Ric63]. This result was further developed in a series of papers by Richard-
son and Sherman [RS64, [Ric65, Ric66, Ric67, Ric68]. Richardson’s approach is akin to the
co-ordinate Bethe Ansatz [Bet31], which does not rely on a solution of the Yang-Baxter
equation. In 1976 Gaudin provided, also without utilising the Yang-Baxter equation, a
general algebraic formulation for constructing integrable systems related to the su(2) Lie
algebra [Gau76]. In doing so he obtained the exact solution for a class of interacting spin
models, referred to as Gaudin models. Gaudin pointed out that these have a similar form
of the BAE as those of Richardson’s solution, but no further connection was established

at that point.

Independent of the works by Richardson and Gaudin, in 1997 Cambiaggio, Rivas
and Saraceno determined a set of conserved operators for the s-wave pairing Hamilto-
nian [CRS97], in the context of nuclear physics. Shortly after, experiments conducted
on metallic nanograins (reviewed in [vDROI]) led to the rediscovery [DS00] of Richard-
son’s hitherto little-known exact solution. In 2001 Amico et al [ALOOI] and Dukelsky
at al [DESO1] independently presented a trigonometric generalisation of Richardson’s
model using Gaudin’s method, which connects back to Richardson’s model in the rational
limit. Following a review [DPS04] it has become commonplace to refer to these models as
Richardson—Gaudin models. The elliptic case (see, e.g., [ST96l [ED15]) is more challeng-
ing, since it breaks u(1) symmetry leading to non-conservation of particle number. In this
thesis we will focus on the rational and trigonometric constructions, leaving the elliptic

case for future work.



Shortly after the development of the QISM in the late 1970s and early 1980s it was
realised that Gaudin models can be viewed as the quasi-classical limit of inhomogeneous
spin chains (see Chapter 13.2 of [Gau83] and [SkI89, HKW92, [Bab93, BF94]). However
these works did not make connection with pairing Hamiltonians, and it was only after
the rediscovery of Richardson’s solution that the correspondence was realised in full.
In particular, it was clarified that Richardson’s solution for the s-wave model, and the
conserved operators, may be obtained as the quasi-classical limit of the twisted-periodic
rational su(2) transfer matrix of the QISM with generic inhomogeneities [AFEF01, WDP02,
ZLMGO02, [Ovc03], and that the trigonometric analogue is related to the p + ip pairing
Hamiltonian [Skr09), TLSZ09, [DIL™10, RDO10].

In 1988 Sklyanin proposed the Boundary Quantum Inverse Scattering Method (BQISM)
[SKI8S|. Based on the Yang-Baxter equation and the reflection equations |Che84|, this
formalism permits the construction of one-dimensional quantum systems with integrable
boundary conditions, and the derivation of associated exact Bethe Ansatz solutions. The
boundary conditions are encoded in the left and right reflection matrices, or K-matrices,
satisfying the reflection equations. The examples of the XXZ and XYZ spin chains, the
non-linear Schrédinger equation, and the Toda chain are discussed in [SKI88|. The method
has been widely applied to the construction and analyses of one-dimensional quantum
models with integrable boundaries, and related mathematical structures, for more than
two decades, e.g., [KS92, IAACT03) [Gal08, [FSWO0S8|, FGSW11], Nic12, BCR13, dGLR13],
PLS13, [FKN14]. The K-matrices for the XXX, XXZ and XYZ spin chains were classified
in [dVGR94].

The quasi-classical limit of the BQISM was studied by Sklyanin in [SkI87], prior to
his more well-known publication [SKI88|. Adopting this approach, several authors have
implemented constructions to produce generalised versions of Richardson—Gaudin systems
[Hik95 ILAHT02, YZG04, [Skr07, [Skr10, [AMNI3]. In-depth analyses however, including
implications for formulating new pairing Hamiltonians, appear to have not been widely
undertaken. This thesis aims to fill this gap, motivated by a wish to understand the

interpretation of the “boundaries” in the Richardson—Gaudin context.

In the first part of the thesis [LILI4] (incorporated as a part of Chapter [2land Chapter
we study Richardson-Gaudin models obtained from the spin-1/2 su(2) BQISM with
diagonal K-matrices. We introduce a generalised version of Sklyanin’s construction using
the trigonometric six-vertex solution of the Yang—Baxter equation which extends the ap-
proach of Karowski and Zapletal [KZ94] to include inhomogeneities in the transfer matrix.

The algebraic Bethe Ansatz is applied to determine the transfer matrix eigenvalues and



associated BAE. This formulation is dependent on a parameter p such that Sklyanin’s
construction is obtained by setting p = 0. In the limit p — oo the twisted-periodic trans-
fer matrix is recovered. We refer to this as the attenuated limit, since it has the effect
of collapsing the double-row transfer matrix to the single-row transfer matrix. We also
discuss the rational limit, and illustrate the general framework for the well-known case of
the Heisenberg XX7 and XXX models.

Next, we turn our attention to a detailed analysis of the quasi-classical limit of this
construction. We initially study the BAE in this limit, and establish that several equiv-
alences emerge through appropriately chosen changes of variables. We then show that
the same equivalences extend to the conserved operators of the system by identifying
appropriate rescalings and basis transformations. For completeness, we confirm that the

equivalences hold at the level of eigenvalue expressions for the conserved operators.

The conclusion from our calculations is that the boundary construction for the spin-
1/2 case, with the use of diagonal solutions of the reflection equations, does not extend
the class of conserved operators beyond results obtained from the twisted-periodic con-
struction. All results for the BAE, the conserved operators, and their eigenvalues can
be mapped back, through appropriate changes of variables (and also rescalings and basis
transformations in the case of the conserved operators) to analogous quantities obtained
from the twisted-periodic formulation. Nonetheless, some surprising features are uncov-
ered. We prove that the trigonometric BQISM construction in the quasi-classical limit is
equivalent to its rational limit. Moreover, we prove that the twisted-periodic and bound-

ary constructions are equivalent in the trigonometric case, but not in the rational limit.

In the second part of the thesis [LIL16] (incorporated as Chapter [4)) we consider the
situation when the K-matrices are non-diagonal. We start with the rational BQISM
with generic non-diagonal K-matrices and derive the formulae for the conserved oper-
ators in the quasi-classical limit. A similar construction has been already studied in
[AMS14] and [AMRSI5]. In contrast to these papers we consider a more general quasi-
classical expansion and also prove that the two families of conserved operators derived in
[AMS14, [AMRS15] are, in fact, equivalent. Next, assuming that one of the K-matrices is
diagonal (this can almost always be achieved by a basis transformation) we simplify the
expressions for the conserved operators. A linear combination of these operators gives an
integrable extension of the p+ ip Hamiltonian with external interaction terms of a patric-
ular form. (The integrability and exact solvability of the isolated p + ip pairing model
was established previously in [ILSZ09].) These interaction terms allow for the exchange

of particles between the system and its environment and, thus, break the u(1) invariance



associated with conservation of particle number.

It is well known that broken u(1) symmetry causes some technical difficulties in apply-
ing the algebraic Bethe Ansatz, in particular, due to the absence of an obvious reference
state. Recently, a systematic method, referred to as the off-diagonal Bethe Ansatz, has
been proposed for solving these models [CYSW13al, [CYSW13bl [CYSW13d, ICCY™14]. Tt
has since been applied to several long-standing problems [LCY ™14} [ZCY 14, HCL*14]
and the results has been summarised in the book by Wang et al. [WYCS15]. In [HCYY15]
this method has been applied to the XXX Gaudin model with generic open boundaries.
Based on this result we derive the formulae for the eigenvalues of the conserved operators,

the corresponding BAE and the energy spectrum (the eigenvalues of the Hamiltonian).

To further develop the project on Richardson—Gaudin models from the BQISM, in
Chapter [5| we consider the most challenging case, based on the trigonometric solution of
the Yang—Baxter equation and generic non-diagonal trigonometric K-matrices. First of
all, we calculate the conserved operators in the quasi-classical limit and show how the
diagonal and rational limits indeed connect this case to the cases considered previously.
The expressions for the conserved operators in this case are quite cumbersome and in-
volve several free parameters. By adjusting these parameters we can construct various
Hamiltonians. For a particular choice of parameters the conserved operators look very
similar to elliptic Gaudin Hamiltonians, obtained in the quasi-classical limit of the XYZ
spin-1/2 spin chain [ST96, [ED15]. This suggests an equivalence between the trigonomet-
ric boundary construction and elliptic periodic construction, similar to the connection
between the rational boundary construction and the trigonometric twisted-periodic con-
struction, which we established previously. Further investigation is required to explore

this connection.

Finally, in Chapter [6] we investigate the models based on the bosonic Lax opera-
tor, which is used in applying the QISM to various physical models, including Tavis—
Cummings models in quantum optics [BBT96] and the two-site Bose-Hubbard model
[ESKS91l, [ESSE92, [EKS93|, [ZLMG03, [LHO06, LETS06, TY13 SFRI3]. First of all, we
revise the QISM procedure in the periodic case and, after that, we include the boundary
by applying the BQISM construction. Surprisingly, this does not lead to increasing of the
number of independent conserved operators. Thus, we proceed to consider the case of the

g-deformed Lax operator, introduced in [Kun07al, to see if the situation is different there.

This case is much more challenging than the case of the trigonometric spin-1/2 Lax

operator, which had both rational and quasi-classical limits well-defined and mutually



commuting. In the case of the g-deformed bosonic Lax operator it is not straightforward to
define the rational and quasi-classical limits. We show how to modify the Lax operator in
order for these limits to be well-defined. Then, we investigate whether the limits commute.
While the quasi-classical limit of the rational limit is well-defined, there appears to be
no obvious way to define the rational limit of the quasi-classical limit. We show that
this difficulty is also present at the level of the BAE. Further investigation is needed to
reveal the full implications of this. In an attempt to overcome this problem we consider
an alternative Lax operator given by a special form of the monodromy matrix, for which
both rational and quasi-classical limits are well-defined. Unfortunately this leads to other
technical difficulties. We plan to continue this direction of research in future. The main
motivation is to ultimately investigate the models obtained by combining the spin Lax
operator and the bosonic Lax operator in the (B)QISM construction, e.g., see [AFORO07,
AFOWT10]. From the physical point of view, this has a potential application in the study
of matter-radiation models [Kun04, [Kun05, [Kun06, [Kun07b] and problems related to
integrability of the Rabi model [Bralll [BZ15].



CHAPTER 2

Preliminaries

The purpose of this chapter is to provide some background knowledge for this thesis.
First of all, we briefly review the QISM and the algebraic Bethe Ansatz (for more detailed
information see [Fad95]). We also introduce the spin-1/2 Richardson-Gaudin models
obtained in the quasi-classical limit from the twisted-periodic QISM construction. Next,
we review Sklyanin’s BQISM construction [SkI8S] (for the trigonometric, spin-1/2 su(2)
case) and introduce a generalisation of the BQISM depending on an additional complex
parameter p, so that setting p = 0 it gives back Sklyanin’s formulation and in the limit
as p — 0o, which we call the attenuated limit, we obtain the twisted-periodic QISM. We
explain in detail how the attenuated limit works for the original trigonometric construction
and for its rational limit. The connections we will obtain are summarised in Figure [2.1
below. Finally, we discuss how the Heisenberg model can be constructed as a special case

of this generalised approach and look at the analogous connections there (summarised in

Figure 2.2 below).

2.1 Quantum Inverse Scattering Method

Throughout this thesis we fix a vector space V = C2. The key ingredient of the QISM
is the R-matriz, which is an invertible operator R(u) € End(V ® V) depending on the
spectral parameter u € C and satisfying the Yang-Bazter equation [Yan67, [Bax72]

ng(u — U)ng(U)Rgg(U) = RQg(U)ng(U)ng(U, — U). (21)

It is an operator equation in End(V ® V ® V'), with the subscripts indicating the spaces

in which the corresponding R-matrix acts non-trivially.
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2.1. QUANTUM INVERSE SCATTERING METHOD

There are three standard classes of R-matrices: elliptic, trigonometric and rational.
In this thesis we will only consider trigonometric and rational cases. Let us introduce the
trigonometri(ﬂ R-matrix associated with the XXZ model [Bax72]:

sinh(u+n) 0 0 0
1 0 inh inh 0
Rlu) = sinhu sinhn | (2.9)
sinh(u + n) 0 sinhn sinhu 0
0 0 0  sinh(u+mn)

where 7 € C is the quasi-classical parameter. Note that (2.2)) is symmetric, i.e., Ris(u) =
Ry (u) and satisfies the unitarity property: Ris(u)Ri2(—u) =1 ® I.

The rational R-matrix

R(u) = (ul ®I+nP)=

, (2.3)
uU+n u—+n

o o o +

oI & O

o 8 3 o
o

where P is the permutation operator, can be obtained from ([2.2)) by introducing a pa-

rameter v € C as a scaling factor in the argument of the hyperbolic functions, and using

inh
Jig S0002) (2.4)

v—0 v
We refer to this procedure as taking the rational limit.

The construction goes as follows. The quantum space of the system (i.e., the Hilbert
space of states) is constructed as a tensor product of local vector spaces V; (at the moment

we do not specify these):
c
H=QV. (2.5)
=1

For each label [ in the above tensor product ({2.5)), we introduce an object called the Lax
operator Ly (u) € End(V, ® V}) satisfying the RLL relation

Rab(u — v)Lal(u)Lbl(v) = Lbl(v)Lal(u)Rab(u — U), (26)

where the auxiliary spaces V, and V, are copies of V.

"While it is conventional to refer to the R-matrix as trigonometric, for convenience we adopt the
hyperbolic parametrisation.



2.1. QUANTUM INVERSE SCATTERING METHOD

We need to introduce another auxiliary object, called the monodromy matriz. It is an

invertible operator acting on V, ® H constructed as follows:

0 e

-
Ty(u) = MyLog(u —£2) - - Laa(tt — £3) Lot (u — £1), where M = (e ) . (27)

The parameters ¢; € C are known as inhomogeneities. These are typically set to be zero
in the construction of one-dimensional quantum lattice models, but are retained as generic
parameters in Richardson—Gaudin models. The matrix M encodes the twisted-periodic

boundary conditions.

One can write the monodromy matrix (2.7) as an operator valued 2 X 2-matrix in the

Tt (A(u) B(u)) |

auxiliary space

C(u) D(u)

where the entries are operators acting in the quantum space H. Using an induction

argument and the fact that
Rop(u — v)M, My, = MyM,Rp(u — v)
one can prove that satisfies the following equation in End(V, ® V, ® H):
Rop(u — 0) Ty (u)Ty(v) = Ty(v) Ty (u) Rap(u — v). (2.8)
The transfer matriz is an operator acting in the quantum space H, given by
t(u) = tro(Ty(u)) = A(u) + D(u). (2.9)
The equation implies that the transfer matrices given by satisfy
[t(u),t(v)] =0 for all u,v e C. (2.10)

This commutativity property is crucial, as it allows us to use the transfer matrix for
construction of quantum integrable models. For example, consider the expansion of #(u)

in powers of u:

From (22.10)) it follows that [C}, Ck] = 0 for all j, k. Thus, the transfer matrix (2.9) gener-



2.2. ALGEBRAIC BETHE ANSATZ

ates a family of mutually commuting operators (which generically will be simultaneously
diagonalisable). Then any function H = f({C;}) of C; can be taken as the Hamiltonian
a quantum integrable model, for which {C;} will constitute a set of mutually commuting

conserved operators.

2.2 Algebraic Bethe Ansatz

Here we outline the algebraic Bethe Ansatz method which allows to exactly solve the
constructed model (i.e., find the eigenstates and the eigenvalues of the Hamiltonian). By
writing in terms of 4 x 4-matrices in V, ® V}, we find, among others, the following
commutation relations for A(u),C(u) and D(u):

_ sinh(u — v +1n) sinhn

A(u)C(v) = sinh(u — v) C(v)A(u) — m C(u)A(v), (2.11)
D()C(r) = T = Gl + et C) D)

In order to construct the eigenstates of t(u) we start with a reference state 2 € ‘H satisfying
B(u)Q =0, A(u)Q = a(u)Q, D(u)Q =d(u)Q, C(u)Q #0, (2.12)

where a(u) and d(u) are scalar functions, so that {2 is an eigenstate for A(u) and D(u)

simultaneously and, hence, also for t(u) = A(u) + D(u).

Remark 2.1. The reference state €2 is an analogue to the “lowest weight” state in the

representation theory of 5(2) and gl(2).

We look for other eigenstates in the form
O =d(vy,...,ox) =C(vq) - C(oy)2 (2.13)

Using the commutation relations (2.11]) one can see that (2.13) is an eigenstate of #(u)

with the eigenvalue

N N .
Alw, 1, ..., W] sinhlu = ve +11) g0 I1 sinh(u — v, — 1) (2.14)

Pt sinh(u — vg) Pt sinh(u — vg)

10



2.8. SPIN-1/2 RICHARDSON-GAUDIN MODELS

if and only if ® # 0 and parameters {v;} satisfy the BAE

a(vg) al sinh(vg — v; — 1)
— =11 . k=1,...,N. (2.15)
i sinh(vy, — v; + 1)

Remark 2.2. In this thesis we will use a simplified notation for sums and products, i.e.,

N N c c
we write H instead of writing H and Z instead of writing Z

itk i=1 j#k j=1
i#k J£k

In the rational limit (2.4]) from (2.14)) and (2.15) we obtain

N N
U — Vi + U — VUV —
A(u,vl,...,vN):a(u)Hu_—kvkn—i-d(u)H—kn,

U—v
k=1 k=1 k

G(Uk) al Vg — Uy — M
S R R T
i#kvk—vi+77

where the functions a(u) and d(u) are in the rational limit.

2.3 Spin-1/2 Richardson—-Gaudin models

Richardson—Gaudin models are obtained by taking the quasi-classical limit (n — 0)
from the QISM. First of all, let us specify the QISM construction for this case.

Here each local space V; in the tensor product (2.5)) is a spin-1/2 representation space
V' = C2 for the su(2) Lie algebra spanned by the spin operators S, , S;", S7 (indices indicate

in which space the corresponding operator acts non-trivially), which for the spin-1/2 case

1 0 1 0
s (O g2 (V) et , (2.16)
0 0 10 2\0 —1

and satisfy the su(2) commutation relations

are given by

157, 5] = £8%, [ST,57] = 257,

For each label [ in the tensor product (22.5)), we introduce the trigonometric spin-1/2 Lax

11



2.8. SPIN-1/2 RICHARDSON-GAUDIN MODELS

operator obtained as a scaling of the (shifted) R-matrix ({2.2)):

sinh(u 4 1n/2)

Ly(u) = T Ry(u—n/2) = (2.17)
sinh(u +n/2) 0 0 0
1 0 sinh(u — n/2) sinh 0
~ sinhu 0 sinh sinh(u — n/2) 0
0 0 0 sinh(u + 1/2)

Remark 2.3. The RLL relation @ follows automatically from the Yang—Baxter equa-

tion .

Remark 2.4. It is easy to check that the operator can be written as follows in
terms of the spin operators :

I 1 sinh u cosh Z + 2 cosh u sinh .57 sinhnS;
alu) = sinh u

sinh n.S;" sinhu cosh 7 — 2 cosh u sinh .57

Remark 2.5. In the rational limit the Lax operator reduces tﬂ

Lai(u) = % <“+”Sl nSr > . (2.18)

QL
0
Note that the state (2 = <1> satisfies the properties of a reference state (2.12]) and

Lo ) 0 1 sinh (u — & — 2) 0 0
a(u—¢ = — ;
: Y1 l sinh(u — &) * sinh (u —&+ g) 1 l

where we follow the tradition that x denotes an operator which does not need to be known

to continue calculations. Thus, we can calculate the expressions for a(u) and d(u):

L . s
a(u) = e M H sinh(u — ¢, — 7]/2>, d(u) = e H sinh(u — ¢, + 77/2)‘

sinh(u — &) sinh(u — &)

(2.19)

=1

2We will not choose different notation for each Lax operator, but the one to be used will be specified
at the beginning of each chapter.

12



2.8. SPIN-1/2 RICHARDSON-GAUDIN MODELS

Substituting ([2.19)) into (2.14) and (2.15]) we obtain an explicit formula for the eigenvalues

c N
sinh(u — g, — 77/2 sinh(u — vy +n)
A . -
(w, v, - H sinh(u — &) ’H sinh(u — wvg) *
= - (2.20)
ﬁ sinh( u—81+77/2 ﬂsmh u— v — 1)
= sinh(u — &) Pt sinh(u — wvg)
and for the BAE
= sinh(vy, — g, — 1/2) al sinh(vg — v; — 1)
e ] =11 d k=1,...,N. (2.21)

- sinh(vy — &+ 1/2) B yn sinh(vy, — v; + 1)’

Now we take the quasi-classical limit in order to obtain the Richardson—Gaudin models,
which involves expanding in powers of n as 7 — 0 and taking the first non-trivial term in

the expansion.

2.3.1 Bethe Ansatz Equations

We start by expanding the BAE (2.21]) in powers of 1. The expansion up to the first
order of the left hand side gives

=2 ﬁ sinh(vy — e, — n/2) _
- sinh(v, — & 4 1/2)

oy ﬁ sinh(vy — &) cosh  — cosh(v; — &) sinh
=e - sinh(vy, — ;) cosh T + cosh(vg — &) sinh

NSNS

L
sinh(vy — &;) — 4 cosh(vx — &) )
=(1-2 O
( ) E sinh(vy — &) + 7’ 7 cosh(vy — &) e
— 2 coth(vy, — &)

2y
1+ ﬂcoth(’uk — &) +0) =

= (1-2nv)

o

=1

[

(1—2ny) H 1 — ncoth(vy, — 61)) +0() =
=1

= (1—2nv) ( —anoth (e — & ) +0n?) =

=1-2ny— anoth ve — 1) + O(n?).

=1

13



2.8. SPIN-1/2 RICHARDSON-GAUDIN MODELS

The expansion up to the first order of the right hand side gives

N

N .
sinh(vy — v; — n) ,
: =1-2 coth(vy — v;) + O(n?).

11 sinh(vy, — v; + 1) 77; (vk ) (n%)

Putting these together we obtain that the BAE in the quasi-classical limit are given by

c N
2v + Zcoth(vk —g) = 2Zcoth(vk —v;), k=1,... N. (2.22)
=1 i#k

2.3.2 Conserved operators

In the quasi-classical limit, conserved operators 7; are constructed as follows from the
transfer matrix (2.9)):
lim (u — &;)t(u) = n*1; + O(n?). (2.23)

U—€j

It is easily verified (using the representation from Remark that Ly (u) given by ([2.17))

can be written as follows:

n
sinh u

S? coshu S,
Eal(u) = ( ! ! ) .

St -5} coshu

Lal(u) =1+ gal(u) + O<n2)’ (2'24>

where

Remark 2.6. Up to a scalar multiple, the trigonometric R-matrixz (2.2)) has the following
quasi-classical expansion:

R(u) = I +nr(u) + O(n?),

where
coshu 0 O 0
1 0 0 1 0
ru) = sinh u 0 10 0
0 0 0 coshu

From the quasi-classical limit of the Yang—Baxter equation (2.1) we obtain the classical

Yang-Baxter equation for r(u):

[r12(u — v),r13(u)] + [ria(u — v), rog(v)] + [r13(w), re3(v)] = 0.

14



2.8. SPIN-1/2 RICHARDSON-GAUDIN MODELS

Let us denote

~ 1
fal(u) - sinh ugal(u)'

Then, from the quasi-classical limit of the RLL relation (2.6) we obtain that gal(u) satisfies

[rab(u — U), gal(u)] + [Tab<u - U), Ebl(v)] + [€a1<u), Ebl(v)] = 0.

The expansion of the twist matrix is given by

e 0 9
M = =1—-2nvS*+O(n). (2.25)
0 en

Using the expressions (2.24) and (2.25)) we can now calculate the expansion ([2.23)):

lim (u — €;)t(u) =

u—e;

= tr, [MaLaz:(é‘j — &) Laji1(e; — €j41)100aj(0) Laj-1(gj — €j-1) -~ Lar(g; — 61)}

l 0
:ntra[(f—anij—l—O( ( +nz 85— en)los(0)

S sinh(e; — €k)
j—1
Caj(0)lar(e5 — &) |
* 772 sinh(e; — e;) Om) | =
k=1
L
Lok (g5 — )04 (0)
= ntra |l (0) + — -+
n [ i(0) ﬁ(kzj;I sinh(e; — )
. La0j(0)la (5 — €k)

J—
+
k=1

- zp 2
smh (ej — &x) 275616(1](0)) + 00 )] .
Utilising

tra(04;(0)) = 0, tra(S34,y(0)) = .

t14(Caj(0)lar(ej — €k)) = tro(Lan(es — €x)la;(0)) =
= 2cosh(e; — x)SiST + S, S + Si Sy,

we obtain from ([2.23)) a set of conserved operators for the trigonometric spin-1,/2 Richardson—
Gaudin model:

2cosh(e; — €,)578% + S, ST + 5SSy
:—2753+Z > ’?) Mg TR TRTT  i=1,. L (2.26)
— sinh(e; — eg)

15



2.8. SPIN-1/2 RICHARDSON-GAUDIN MODELS

2.3.3 Eigenvalues

The eigenvalues A; of the conserved operators ([2.26|) are constructed as follows:

lim (u — g;)A(u) = n°)\; + O(n?). (2.27)

u—ej

To calculate this expansion let us first expand the expressions (2.19)) for a(u) and d(u):

a(u) = e ﬁ sinh(u — g, — n/2) _

sinh(u — &)

o ﬁ sinh(u — &) cosh 7 — cosh(u — &) sinh
—° sinh(u — ¢;) N

=1
£ 2

(1—m+%+0( ))H<1+%—gcoth(u—81)+(’)(773)) =

=1
2.2

c
_ no 3 n
_(1—7774— 5 —|—(9(n))< —§Zcothu—5l)+ E—l—

=1

L c
n
+ZZZCOthU_6Z coth(u —e) + O(n ))z

=1 k#l

N

L2 L L L L
top? 3 + % + % Z coth(u —¢;) + 1 Z Z coth(u — &;) coth(u — ;) | + O(n?).
=1 I=1 kAl
Analogously,
L L
. 2
d(u) = e"”H% =1 +n'y+choth(u—5l) +
I=1 - I=1
L2 1 L L
+ st *s > " coth(u — &) + i D> coth(u — &) coth(u — &) | + O(n?).
=1 I=1 k#l

Now we can compute the limits

2 1 L
lim (u = £)a(u) = =2 + %(w 5 2 cothe; —ek>> +00P),

K]

16



2.8. SPIN-1/2 RICHARDSON-GAUDIN MODELS

lim (u — ¢;)d(u) = g + %2 (7 + %Zcoth(ej - 5k)> + O(n?).

U—e; ‘
k#j

Then, from (2.14)) we obtain

lim (u — ¢;)A(u) =

u—e;

— Jim (u — £;)a(u) H sinb(ej — V; —|— n) T lim (u — &5)d(u) H sinh(aj —v; — 1) _

u—e; paley sinh(e; — v;) u—e; P sinh(s; — v;)
N 1 & N
= 3
— —§+7<7+§Zcoth —sk)>+(’)(n) <1+anoth( )+ O( ))
k#j i=1
n 7 1
+l5tg ( +§Zcoth(sj—sk)> + O (1—anoth =)+ O(n )) =
k#j
N 9 L
= —p? Z coth(e; —v;) + % Z coth(g; — &) + 1 + O(n®)
=1 ke

Thus, we obtain the eigenvalues of the conserved operators (2.26)) from (2.27)):

c N
1 :
Aj =7+ 5 ké coth(e; —e) — E coth(e; —v;), j=1,...,L. (2.28)
y -

2.3.4 Rational limit

Here we describe how to apply the rational limit (2.4)) to the trigonometric expressions

E2). @) mnd @),

e BAF.
Introduce the parameter v into (2.22)) as follows:

277 + Z coth (V(Uk — 61)) =2 ZCO’Gh (V(Uk - Uz))

itk

1
Then multiply through by v and consider v — 0. Using lir% (vcoth(vz)) = = we
v—r €T
obtain the following BAE in the quasi-classical limit:

=1,...,N. (2.29)
Vk —UZ

L 1 N
27+;Uk_gl ;

17



2.4. BOUNDARY QUANTUM INVERSE SCATTERING METHOD

Similarly, we obtain conserved operators and their eigenvalues in the rational limit:

e Conserved operators.

£.2575% + S ST+ S/EST

Ti=—2ySi+ ) ! — Lo j=1,....L (2.30)
K 7ok
e Figenvalues.
AN
Aj = =1,...,L. 2.31
Y+ Zgj_gk ;@_M =1 (2:31)

Remark 2.7. In what follows we will denote the expressions (2.29), (2.20), (2.28) col-
lectively as Trig. QISM and the rational expressions derived in Section as Rat.
QISM.

2.4 Boundary Quantum Inverse Scattering Method

In the BQISM framework the boundary conditions are encoded in the left and right re-
flection matrices, or K -matrices, K~ (u) and K*(u) € End(V), which satisfy the following
reflection equations in End(V @ V') [Che84]:

ng (u )

K7 (u) Ry (u + 0) K3 (v) = K3 (v)Ria(u+ v) Ky (u) Ry (u — ), (2.32a)
Ria(v — u) K (

u)Ror(—u — v — 2) K5 (v) =
= K5 (v)Ria(—u — v — 20) K (u) Roy (v — u). (2.32Db)

Let us introduce the monodromy matrix as (2.7)) in the twisted-periodic case, but without
the twist M (i.e., setting v = 0),

To(u) = Log(u—eg) -+ Lo (u — &1), (2.33)

where L(u) is the trigonometric spin-1/2 Lax operator (2.17) and ¢; € C are inhomogene-

ity parameters. Introduce the dual monodromy matriz as

To(u) = Loy (u+¢e14+ 1) Lag(u+ ez +1). (2.34)

18



2.4. BOUNDARY QUANTUM INVERSE SCATTERING METHOD

Note that the Lax operator (2.17)) satisfies L,;(u)Lq;j(n — u) o< I. Thus,

To(u) o Ly (—u— 1)+ Lop(—u —eg) = T, (—u),
which implies, using (2.8)), that (2.34) and ([2.33)) satisfy the following relations:

T (v) Rap (4 v)To(u) = To(u) Rap(u + v) Ty (v), (2.35)
To(u)Ty(v) Rap(v — 1) = Rap(v — u)Ty(v) Ty (w). (2.36)

Introduce the double-row monodromy matrix
Ta(w) = Ty (u) K (u)T(u). (2.37)

Using the relations ({2.8), (2.35), (2.36) and the reflection equation (2.32a}) one can check
that the monodromy matrix given by ([2.37)) satisfies the following equation in V, ® V, @ H.

Rap(u — 0) Ta() Roa(u + 0) To(v) = To(0) Rap(u + v) Ta(t) Rpu(u — 0). (2.38)

Now, the double-row transfer matriz is defined as

t(u) = tr, (K (u)Ta(w)) . (2.39)

Using ([2.38]) and the dual reflection equation (2.32b)) one can prove that, like in the
periodic case, the transfer matrices given by (2.39) commute for any two values of the

spectral parameter:

[t(u),{(v)] =0 for all u,v € C.

Thus, also in this case the transfer matrix can be used it as a generating function for the

conserved operators.

The following K-matrix| satisfies the reflection equation (2.32a)) together with the
trigonometric R-matrix (2.2)):

~_, [sinh(§” +u) 0
K™ (u) = ( ) suh(e — u)) . (2.40)

3In this chapter we only consider the diagonal solutions to the reflection equations (2.32). In the
following chapters we will also consider off-diagonal solutions.
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2.4. BOUNDARY QUANTUM INVERSE SCATTERING METHOD

Then,

sinh(¢* +u
k+<u>:—k<—u—n>!§_w+:< He Sinh(£+()_u_n)> 241

automatically satisfies the dual reflection equation (2.32b]). For subsequent calculations
it is convenient to make a variable change u — u — n/2, €, + ¢, — n/2 and redefine all
functions taking this into account. For the K-matrices (2.40)), (2.41]) this results in

K (u) = K~(u—n/2) = (Smh(g el sinb(e- o ) /2)> L (242)
sinh(¢t 4+ u +1n/2) 0

() = V-‘ru_ =
K™ (u) = K™ (u—n/2) ( 0 sinh(§* —u —n/2)

) ) (2.42b)
The double-row monodromy matrix (2.37)) is now given by

To(uw) = Log(u—¢eg) -+ Lar(u —e1) K, (u)Lay(u+€1) - Lac(u+er), (2.43)
and the transfer matrix is, correspondingly,

t(u) = trg (K;_(U)Lag(u —er) Lat(u—e1)K, (u) Loy (u+e1) - Lag(u+ €£)). (2.44)

Like in the periodic case, one can write the monodromy matrix (2.43) as an operator

valued 2 X 2-matrix in the auxiliary space:

Remark 2.8. Note that we use the same notation for the entries of the monodromy matrix

as in the twisted-periodic case. We will keep recycling this notation in the future.

It is convenient to work with A(u) = sinh(2u)A(u) —sinh nD(u) instead of A(u). Using
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2.4. BOUNDARY QUANTUM INVERSE SCATTERING METHOD

(2.38)), one can show that the following commutation relations hold:

_ sinh(u — v — ) sinh(u +v —n)
D(u)C(v) = sinh(u — v) sinh(u + v)
sinh 7 sinh(2v — n)
sinh(u — v) sinh(2v) Cw)Dl)
_ B sinh(u — v + n) sinh(u + v +n)

A(u)C(v) = sinh(u — v) sinh(u + )

_ sinhp sinh(2u + n) 5
sinh(u — v) sinh(2v) ClwAl) +
sinh 7 sinh(2v — n) sinh(2u + n)

sinh(u + v) sinh(2v)

C(v)D(u) +

sinhn
sinh(u 4 v) sinh(2v)

C(v)A(u) — (2.45)

C(u)D(v).

The transfer matrix (2.44]) can be written in the form

_ sinh(§" 4+ w4+ 1/2)

() sinh(2u + 1) sinh(§T — u +7/2)
sinh(2u)

sinh(2u)

A(u) + D(u).

To find its eigenstates and eigenvalues we follow a generalisation of the algebraic Bethe
Ansatz as described in [SKISS|. As in the periodic case, we start with a reference state
Q) € VO satisfying (2.12)) and look for other eigenstates in the form (same as (2.13)) in

the twisted-periodic case)
b = (I)(’Ul,...,UN) = O(’Ul)C(’UN)Q (246)

By linearity from (2.12)) we have A(u)Q = a(u)2, where a(u) = sinh(2u)a(u) — sinh nd(u).
Using relations (2.45)) one can prove that the state ® given by (12.46)) is an eigenstate of

t(u) with the eigenvalue

sinh(§* +u+n/2)
sinh(2u)

Alu, vy, ... on) = alu)

N . :
sinh(u — vy, + 1) sinh(u + v, + 1)
X H ) +

sinh(u + vg)

sinh(u — v
k=1 ( k

sinh(2u + ) sinh(§t — u + n/2)
sinh(2u)

(2.47)

+ d(u)

)

" lN_I sinh(u — vy — 1) sinh(u + vy — n)

Pl sinh(u — vy) sinh(u + vy)
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2.5. GENERALISED BQISM

if and only if ® # 0 and the following BAE are satisfied:

a(vg) sinh(§F 4+ ve +1/2)
d(vg) sinh(2vy, — ) sinh(é+ — v +1/2)
H sinh(vy, — v; — n) sinh(vg + v; — n) b1 N (2.48)
N smhvk—vl—kn)smh(vkjtvz—i—n) T
0 QL
Again, one can check that 2 = (1) is a reference state and
0 1 inh(u — & —n/2 0 0
Lal(” . 51) - Si11 (U €l 7)/ ) ‘ 7
1/, sinh(u — ¢;) * sinh(u —e,+1/2) ) \1),
0 1 inh(u + ¢, —n/2 0 0
Lal (U + 5l) . S (U l 77/ ) . .
1/, sinh(u + &) * sinh(u+¢+n/2)) \1 z
From here one can derive the formulae for a(u) and d(u):
a(u) = sinh(2u — n) sinh(§~ 4+ u +n/2) x
" f[ sinh(u — g, — n/2) sinh(u 4 ¢, — 1/2)
o sinh(u — g;) sinh(u + &) ’ (2.49)

sinh(u — g, +1/2) sinh(u + ¢; + 7)/2)
sinh(u — &;) sinh(u + &)

L
d(u) = sinh(§~ —u +1n/2) H

2.5 Generalised BQISM

Here we will implement a modification of Sklyanin’s formulation, following Karowski
and Zapletal [KZ94]. This consists of introducing an additional parameter p, which pro-

vides a shift in the parameters:

ur—>u+§, 6ll—>€l+g. (250)

It will allow us to interpolate between the boundary and the twisted-periodic cases. The
limit p — 0 reduces to Sklyanin’s original boundary formulation, while the limit p — oo,

as we will see later, yields the twisted-periodic construction. After implementing the
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2.5. GENERALISED BQISM

variable change (2.50]) the transfer matrix (2.44]) becomes

t(u) = tr, (K;(u 4 p/2) Lag(u—e2) - Lay(u — £1) %

X K, (u+p/2)Lar(u+e1+p) -+ Loc(u+er —i—p)).

The eigenvalues (2.47)) and the BAE ([2.48) are now given by

sinh(§* +u+ p/2 +1/2)

Alw v, oon) = alw) == 5 =

al sinh(u — vg + ) sinh(u + vy + p +n)
<11

sinh(u — vy) sinh(u + vg + p) *

k=1
. . +
() sinh(2u + p + 77)' sinh(§" —u —p/2+1/2) y
sinh(2u + p)

" ﬂsmh u—vg —n)sinh(u+vp +p—1n)
sinh(u — vy) sinh(u + vg + p) ’

a(vg) sinh(§" + v +p/24+0/2)

d(vy,) sinh(2vg + = n) sinh(EF — v — p/2+1/2)

B H sinh(vg — v; — n) sinh(vg +v; + p — 1)
sinh(vy — v; +n) sinh(vg +v; + p+ 1)’

k=1,...,N,

where

a(u) = sinh(2u + p —n) sinh(§~ +u + p/2 +1n/2) X

" ﬁ sinh(u — g, — n/2) sinh(u + ¢, + p — n/2)
sinh(u — &;) sinh(u + &, + p)

)
=1

L .
d(u) = sinh(6~ —u — p/2 +1/2) H sinh(u — &, +n/2)sinh(u + & + p + ,7/2)

- sinh(u — ;) sinh(u + &, + p)

(2.51)

(2.52)

(2.53)

(2.54)

Remark 2.9. In the following we will refer to the shift (2 as the variable change #1.
According to the algebraic Bethe Ansatz procedure, for the BAE it will result in the change

of variables

Ukl—>vk+8, 5l'_>51+£
2 2
and for the eigenvalues, correspondingly,

p p p
U U+ =, U+ =, g =g+ —.
+27 k k+27 I l+2
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2.5. GENERALISED BQISM

Setting p = 0 above, the construction reduces to the regular form of the BQISM with
inhomogeneities. Below we show that the limit p — oo reduces to the twisted-periodic
QISM formulation, where the twist is sector dependent. We refer to this limit as the
attenuated limit, since the double row transfer matrix reduces to a single row transfer
matrix as p — oo. This approach was used in [KZ94] to construct twisted-periodic one-
dimensional quantum lattice models in a manner which preserved certain Hopf-algebraic

symmetries.

Remark 2.10. In the following, we will take various limits of quantities such as the oper-
ators K*(u) and L(u), the transfer matriz, its eigenvalues and the BAE. For readability
we have chosen not to introduce new notation for each limiting object, but will ensure that

it is clear which expression is being affected. We will also omit vy, ..., vy in the notation

of the eigenvalues and writing simply A(u).

2.5.1 Attenuated limit

For the Lax operator (2.17) we have

g% 0 0 0
wroo 0 ¢ 0 0
L(u) M = 0 0 q71/2 0 ’

0 0 0 q'?

where g = €.

. 10
Consider a matrix N, = (O O) acting on the [th space V; from the tensor product

!
(2.5). We then have
¢ 0 = qu*1/2 ¢ 0 = q1/2,Nl.
0 q_1/2 l 0 q1/2 l

Ni—1/2 0
U—00 (49
Lal<u> — Ml - ( O q1/2—N1> ’

Thus,

and

p—+00

La(uter+p)Lac(utec+p) —— MiMy--- Mg =
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2.5. GENERALISED BQISM

qufl/Z 0 qNﬁ*l/Q 0
- 0 q1/2—1\71 o 0 ql/z—z\"fﬁ -
qu£/2 0
- 0 q£/2—]\7 ’
L

where N = Z N,. A transfer matrix eigenstate ® is also an eigenstate of the operator N
1=1
with eigenvalue equal to N, the number of C-operators applied to the reference state in

order to obtain ® = C(vy)---C(vy)Q. In this manner it is seen that the transfer matrix

has a block diagonal structure whereby N takes a constant value on each block.

Introducing an additional scaling factor (sinhw)™' into the K-matrices (2.42)) and

taking the limit as u — oo we obtain

K-(u) = 1 (sinh(ﬁ‘—l—u—n/?) 0 )H_O% ((25—’7/2 0 )7

~ sinhu 0 sinh(§~ —u+1n/2) 0 —e—¢ /2
Kt ) = L (SnhET +utn/2) 0 wo, (520
u) = — .
sinh u 0 sinh(&t —u —1n/2) 0 —eET /2

Denote

We then have

p—00 & /2 0 A(u) B(u)\ [e& /2 0
t(u) — tr, ( ( 0 _e—£++n/2)a (C’(u) D(u)) ( 0 —6_5_’7/2>a .

qN—£/2 0
X 0 qE/QfN -

= exp(£T + &) A(u) exp (n(N — £/2)) +
+exp(—¢t =€) D(w) exp (n(L/2 — N)).

Since N is a conserved operator, it commutes with both A(u) and D(u). Thus,
t(u) 275 exp(€F 4+ €+ N —nL/2)A(u) + exp(—€F — € +nL/2 — nN)D(u). (2.55)

Remark 2.11. Recall from Section that twisted-periodic transfer matrix has the
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2.5. GENERALISED BQISM

m

t(u):tra«@_o"” e“) La[;(u—q)---Lal(u—el)) — exp(—17) A(u) + exp(i7) D(u).

Thus, to obtain the twisted-periodic transfer matrizc (@ from the attenuated limit
of the boundary transfer matrix , we need to impose that v depends on N :

y=L/2—N—-n £ (2.56)

From ([2.54)) we can compute that
a(vy) _ sinh(§™ +w +p/24+1/2)
d(vg) sinh(2v, + p—n)  sinh(§~ — v — p/2 +1/2)

" f[ sinh(vg — &, — n/2) sinh(v, + &, + p — n/2)
sinh(vg — g, + n/2) sinh(vg + &, 4+ p+n/2)

=1
In the limit as p — oc:

sinh(§~ 4 vx + p/2 +1/2)
sinh(§~ — v, — p/2+1/2)
sinh(¢1 4+ v, + p/2 + 1/2)
sinh(§+ — v, — p/2 4+ 1/2)
)
)
)
)

pP—00

[ eXp<2€7 + 77)7

— - eXp(2€+ + 77)7

sinh(v, + ¢+ p —1n/2
sinh(vg, + ¢+ p+1n/2
sinh(vy +v; +p—1n
sinh(vg +v; +p+1n

p—00

? eXP(—U)7

=, exp(—2n).

Thus, the BAE (2.53)) in this limit reduce to

L sinh(v, — &, — 1/2) N sinh(vy —v; — )
I k— €l — _ k%
exp (2(67 +&7) =L +2N) g sinh(vy, — & +1/2) g sinh(vg —vi + 1)

We recognise that subject to (2.56|) these are equivalent to the BAE (2.21)) for (2.9), as

required.

In a similar manner we obtain the limit of the eigenvalues (2.52)) (taking into account
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2.5. GENERALISED BQISM

scaling factors in the K-matrices) as

sinh(u — g, —n/2) lN_[ sinh(u — vg + 1)
sinh(u — &) sinh(u — vy)

L
Afu) =255 exp(EF + & —nL/2+9N) [ ]
=1 k=1
L

+exp(—¢T =& +nL/2—nN) [ ]
=1

sinh(u — g, +1/2) ﬁ sinh(u — vg — 1)
sinh(u — &)

which, subject to (2.56)), are equal to (2.20)) from the twisted-periodic construction.

2.5.2 Rational limit

In this section we show that there is a relationship between the rational twisted-
periodic system and the rational boundary system that is similar to the trigonometric
case that we have just discussed in the previous section. As discussed before, in the
rational limit the Lax operator turns into . In the rational limit from the
K-matrices with an additional scaling factor u~! we obtain

K-(u) =+ (5 Tu=n/2 ! ) : (2.57a)

u 0 £ —u+n/2
+ 1 (& +u+n/2 0
K (u)—>u< 0 §+—u—77/2>‘ (2.57Db)

We observe that in this limit, the BAE (2.53) become
(& o +p/2+0/2)(E +vetp/241/2)
(€ —ve—p/2+n/2)(EF — v — p/2+1/2)
(
(

c
XH vp — e —n/2)(vp +e+p—n/2)
(vp —e1 +1/2) (v + e+ p+n/2) (2.58)

)
)
ﬂg’l}k—vl vk—l—vi—i—p—n)

e (e = v ) (e + vt p+n)’
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2.5. GENERALISED BQISM

and the expression for the eigenvalues given in (2.52)) (taking into account the new scaling
factor (u+ p/2)~! in the K-matrices) can be explicitly written as

(Qu+p—n)(§ +u+p/24+n/2)(E" +u+p/2+n/2) "
(2u + p) (u+p/2)?
L N
(u—e—n/2)(u+e+p—n/2) 71 (u—vp +0)(u+ v+ p+n)
XH (u—-e)(u+e +p) kl_Il (u—vg)(u+ v, + p)
Qutp+n) (& —u—p/2+n/2)(EF —u—p/2+77/2)
(2u+p) (u+p/2)

(u—e+n/2)(ute+p+n/2)
XH (u—e)(u+e+p)

A(u) —

_|_

(2.59)

(u—ve = n)(u+ve+p—n)
(u—wve)(utoe+p)

= "

k=1

The transfer matrix in the rational limit is readily obtained by employing the
expressions and . To determine the attenuated limit of this rational transfer
matrix, we first observe that from (2.18), L(u) — I as u — oo. This implies that the
terms L,;(u + ¢ + p) occurring to the right of K, (u+ p/2) in all simplify to the
identity as p — oo. Without loss of generality, we moreover suppose that £~ does not
depend on p, in which case taking the attenuated limit of gives

K- (u+p/2) 22 ((1) _01>

Furthermore, we set £ = (p, where ¢ € C, from which we obtain the attenuated limit of

equation (2.57b|) above:

K*(u+p/2) 22 <2<+1 0 )

0 2-1

Thus, we have the attenuated limit of the rational transfer matrix in the form (2.51)) being
given by

p—00 2(+1 0 1 0 B
t(u) — trg, (( 0 2% - 1>a Lar(u—eg) - Lo (u — &) (0 —1)() =

= (1420 A(u) + (1 = 2¢) D(u),

where the operators L,;j(u — ¢;) and, correspondingly, the operators A(u) and D(u) are

in the rational limit.

Finally, imposing the condition that ¢ # £1/2 to avoid any technical issues of diver-
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gence, for convenience we rescale

K*(u+p/2) %wzﬁ(u +0/2)

to match this limiting expression for ¢(u) with the rational limit of the twisted-periodic

transfer matrix given in equation (2.9) above. This is achieved by setting

B 142¢ 1-92C
eM= 125 o % 2.60
V1—4¢ V1—4¢ (2:60)
In the attenuated limit (i.e., p — 00), the rational BAE ([2.58)) become
L N
142 e —n/2 o —

+ CH vy —€1—1/ _ H Uk — Vi TN (2.61)

1—2Clzlvk—€l—|—77/2 #kvk—vﬁ—n

It is evident that, taking (2.60]) into account, we may identify (2.61) with the rational
limit of (2.21]).

Finally, the expression for the eigenvalues (2.59) in the attenuated limit is

A(u) —

c N
142 u—ge —n/2 U — v +
¢ H 1 —n/ H /i
1 —4¢? e U — & o T Uk

N 1—2C ﬁu—€l+n/2ﬂu—vk—n

\/1—4@[:1 u—é& ;o U U .
By once again applying ([2.60]), we may identify the expression (2.62)) with the rational
limit of (2.20). In other words, we have shown that the rational and attenuated limits

commute, subject to appropriate scaling of relevant quantities.

(2.62)

A convenient way to summarise our discussions so far in this section is to provide
a diagram (Figure highlighting the connections we have made between the various
trigonometric, hereafter denoted Trig., and rational, hereafter denoted Rat., construc-
tions. We will also use the notations BQISM to denote Sklyanin’s boundary construction
from Section[2.4] and QISM for the twisted-periodic construction described in Section [2.3
(which can be obtained in the attenuated limit). Trig. BQISM’ and Rat. BQISM’ are
merely the respective Trig. BQISM and Rat. BQISM with p included explicitly in
all expressions via the variable change #1, denoted simply by #1 in the diagram, which
was introduced in in the beginning of the current section (see Remark . We do not

consider these to be fundamentally different systems, but make the distinction as a con-
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2.5. GENERALISED BQISM

venience to highlight our utilisation of the methods of Karowski and Zapletal [KZ94] via

the attenuated limit.

p—0 — 00

Trig. BQISM Trig. BQISM' Trig. QISM
rational limit rational limit rational limit
p—0 p—00
Rat. BQISM Rat. BQISM' Rat. QISM

Figure 2.1: Connections between the (diagonal) boundary and twisted-periodic QISM
constructions.

2.5.3 Heisenberg model

In this section we show how the Heisenberg model can be obtained as a special case
from the general construction outlined so far. Here the inhomogeneity parameters ¢; are
set to be zero, the Lax operator L(u) is set to be the R-matrix R(u) itself, and we omit
the shift u — u — 1/2 described in equations .

Thus, the transfer matrix is
) = trg (K (u p/2) Rac(u) -+ Ras (WK, (u+ p/2)Rar(u+ p) -+ Raglu+p)). (2.63)

If we take p — 0 we obtain the open chain Heisenberg model transfer matrix:

t(u) = try (K (W) Rag(u) -+ Ro1(w) K (u)Ro1(u) - -+ Rag(w)) - (2.64)

The Hamiltonian is constructed from ¢(u) given by (2.64) as follows:

-1 >
=0 0) = Y Higen + 5 (K7 0)) ™ (K7) 0 + “‘;r”%ffzgg‘) o (26)

/

where Hj(jy1) = Pi(j11) R 1) (0), Hoe = Riyp(0)Pag, and #(0), R}, 1 (0) and (K;) (0)

are derivatives of the corresponding operators at © = 0. The explicit form of the Hamil-
tonian ([2.65)) in terms of Pauli matrices may be found in [SKI8S].
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Now if we consider p — oo, the transfer matrix (2.63|) will tend to
t(u) = exp(§7 + & + 0N —nL/2)A(u) + exp(=£" — & +nL/2 —nN)D(u),

where

Raﬁ(u) T Ral (U’) = (éEZ; iiz;) :

By choosing v = £/2 — N — n71(¢F + £7) we can match it with the transfer matrix for

the closed chain, namely

my

t(w) = exp(=1) A(u) + exp(r) Dla) = t, ((0 f) Raau)---Ral(u)).

Here again
L-1
H=t"(0 Z sy T X HnXe =) Higeny + X Hu X;!
j=1

m

, e 0
where Hygjin) = Fignfi)(0) and X = {0 -

In the rational limit (XXX model), the calculations are completely analogous to Sec-

tion [2.5.2 so we omit the details.

As in Section [2.5.2] we may summarise the analogous connections for the Heisenberg
model in Figure 2.2 Tt is worth highlighting the fact that for the Heisenberg case, since
we have set the parameters €; = 0, it is not possible to implement the variable change #1

discussed in the previous section.

p—00

XXZ open Trig. BQISM' (¢; =0) XXZ closed
rational limit rational limit rational limit
XXX open<~—"" Rat. BQISM' (¢; = 0) —=* ~ XXX closed

Figure 2.2: Connections between the Heisenberg models (with and without boundary).
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CHAPTER 3

Richardson—Gaudin models with diagonal

reflection matrices

In this chapter we investigate the quasi-classical limit of the system described in Sec-
tion (and its generalisation introduced in Section [2.5)), which involves expanding all

expressions in 1 as 7 — 0 and taking the first non-trivial term in the expansion.

In the quasi-classical limit, unlike the special case of the Heisenberg model (Sec-
tion , we are able to implement variable change #1. Moreover, we gain the ca-
pability of implementing two additional variable changes. It is through these variable
changes that we are able to make unexpected connections between various systems in the
quasi-classical limit. We find that the commutative diagram presented in Figure in
contrast to those presented in Section [2.5] illustrates the connections we shall make in

this chapter.

Trig. BQISM Trig. BQISM’ ———— Trig. QISM
A A #3
| |
#2 : rational limit #2 : rational limit rational limit
| |
| p—0 | p—00
Rat. BQISM Rat. BQISM/ Rat. QISM
#1

Figure 3.1: Proposed connections between the Richardson-Gaudin models obtained
from the BQISM with diagonal reflection matrices.

The connections that have been established previously (see Figure still hold in

the quasi-classical limit. Dashed arrows represent the connections that are yet to be
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3.1. BETHE ANSATZ EQUATIONS

established. In the diagram we adopt the notation where #1 denotes variable change #1,
#2 is used for variable change #2 combined with some other operations, and #3 represents
variable change #3 with different operations, all of which are specified explicitly in the

text below.

First of all, we are going to establish the above connections for the BAE (Section
and then we show that the same connections also hold on the level of the conserved
operators (Section and their eigenvalues (Section .

3.1 Bethe Ansatz Equations

We start by considering the BAE. Substituting the expressions (2.49) for a(u) and
d(u) into the BAE ([2.48)) gives

sinh(§F + v +n/2) sinh(§~ + v, +1/2)
sinh(§+ — v +n/2) sinh(§~ — v +1/2)

(
(
xﬁl (0p — &1 — 77/2; sinh(vg, + ¢ —n/2)
(
(

h(ve — & +n/2) sinh(vg + & +1/2) (3.1)

B ﬁ sinh(vg — v; — n) sinh(vg + v; — 1)
— i sinh(vy — v; + 1) sinh(vg +v; + 1)
If we set n =0 in (3.1), the expression reduces to

sinh(§~ + vg) sinh(§7 + vy)
sinh(§~ — vg) sinh(&T — vy)

=1. (3.2)

Furthermore, we assume that £ depend on 7 in such a way that (3.2)) holds as n — 0, to
ensure that the quasi-classical limit is well-defined. We impose the following choice which

is consistent with that property:

F=E+na, & =-E+np. (3.3)

Remark 3.1. For instance, if we take £ =& +na, £ =& +nB, & # &, the identity
(3.2) will not generally hold when we set n = 0.

The expansion up to first order in 7 for the right hand side of the BAE (3.1) with
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(3.3)) is given by

sinh(v, — v;) — ncosh(v, — v;)) (sinh(vg + v;) — ncosh(vy, + v;))
sinh(vy, — v;) 4+ ncosh(vy — v;)) (sinh(vy, + v;) + 1 cosh(vy, + v;))

+0(n*) =

—

<
*
ol

(1 — neoth(vy — v;)) (1 — ncoth(vy, + v;))
(1 + ncoth(vy —v;)) (1 + ncoth(vy + v;))

—.

+0(n?) =

<.
LS
x>

(1 — 2ncoth(v, — v;)) (1 — 2ncoth(vg + v;)) + O(n?) =

L

Jj#k
N
=1-2n Z (coth(vy — v;) + coth(vy, +v;)) + O(n?).
J#k

Now let us look at the expansion of the left hand side:

£ sinh(v, — & — 1/2) sinh(vy + & —1/2)
H sinh(vy — g +n/2) sinh(vy + &, +1/2)
c
=1- nz (coth(vy — &) + coth(vy, + &)) + O(n?),
=1
sinh(§F + v +1/2) sinh (v + (o +1/2)) 1+ n(a+1/2) coth vy
sinh(é+ — ve +n/2) " sinh (—vk + n(a+1/2)) S n(a + 1/2) coth vy,

= —1—2n(a+1/2) cothvy, + O(n?),

+0(?) =

sinh(§~ 4+ v, +1/2)
sinh(§~ — v, +n/2)

= —1—2n(B + 1/2) cothvy + O(n?).

Putting these together we obtain that, up to first order in 7, the expansion of the left
hand side of (3.1)) is

c
1 —n(a+ B+ 1)(coth(vy — &) + coth(v, +€)) —n Z (coth(vy — &) + coth(vy, + £)).
1=1

Let us denote 6 = —(a+ 8+ 1). Then, in the quasi-classical limit as 7 — 0, the BAE in
the case Trig. BQISM are given by

c
5((:01:h(v;C — &) + coth (v + f + Z coth(vg — ;) + coth(vg + sl))
=1

. (3.4)

=2 Z (COth(Uk —v;) + coth(vg + vl))
itk
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3.1.1 Variable change #1

Variable change #1

Ukl—>?]k+§, 81H€l+g (35)

turns Trig. BQISM (B.4) into Trig. BQISM:

6(C0th(vk +p/2 = &) + coth(vg + p/2 + 5)) +
c

+ Z (coth(vk — &) + coth(vg + & + ,0)) =
=1

(3.6)
N

=2 Z (coth(vy — v;) + coth(vy, + v; + p)).
ik

It is straightforward to see p — 0 turns (3.6)) back into (3.4)).

3.1.2 Attenuated limit

As p — oo Trig. BQISM' (3.6)) reduces to Trig. QISM (2.22) in the quasi-classical

limit:

c N
20 + Z (coth(vy — &) + 1) = QZ (coth(vy — v;) + 1),
=1 ik

or

c N
2y + Z coth(vy — &) =2 Z coth(vy, — v;),
=1 ik

where y =0+ L/2—(N—-1)=—(a+ [+ N —L/2).

3.1.3 Rational limit
Introducing a parameter v into Trig. BQISM’ (3.6) we obtain
§ (coth (v(vk + p/2 — €)) + coth (v(v, + p/2+§))) +

+ Z (coth (V<Uk - 51)) + coth (Z/(Uk +e 4+ ,0))) _

=2 Z (coth (v(v — v;)) + coth (v(vg + v; + p))) -
ik
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1
Multiplying by v we obtain, since lim (v coth(vz)) = —, Rat. BQISM' as v — 0:
x

v—0

) - 1 a 1
+ =2 ., (3.7
TR DY e ey TR DY ey e
which turns into Rat. BQISM as p — 0:
c
=2 .
v —¢& +Zv —¢? ka—v (38)

i#k

3.1.4 Rational BQISM and trigonometric QISM equivalence

Making a change of variables v — Inyy, € + Inz in Trig. QISM (12.22)) we obtain

2 +Zyk+zl _ Zyk+y12

1;&]@ Yi

which can be rewritten as

25+Z(‘;”“+Z’ +1> _22(‘”“% +1)

k ith Ui — i

with § =~ — L£/2+ (N — 1) as above. Or, after a simplification,

L

0+

=1 yk

—2 Z y’f (3.9)

Note that (3.9) turns into Rat. BQISM (3.8)) under the following (invertible) variable

change:
Uk > \JUE— &2, 2y JeP — &2

Combining these variable changes, we obtain that Trig. QISM is equivalent to Rat.
BQISM via the variable change from (2.22)) to (3.8)) given by

v = Iny /o — &2 g Iny/e? — &2, (3.10)

v =/ exp(2ug) + &2, g — vexp(2g;) + &2

and its inverse
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3.1. BETHE ANSATZ EQUATIONS

which obviously maps from (3.8)) to (2.22)).

3.1.5 Variable change #2

It can be seen that we may transform from Rat. BQISM (3.8) to Trig. BQISM
(3.4) by a suitable variable change. Application of

-1 -1 -1
Yk — Yg 2l % X—X
> gy s
Vg, 2 » €l 92 ) é 9
to Rat. BQISM (3.8) gives
c N
) l 2
- 5+ T — T
(e — 9 )2 = (x —x7Y) ; (e =y 2= (2 — 7 1)? ;(yk—yk )2 = (yi —y; 1)?
Multiplying both sides by y? — v, >
c N _
3(yi — +Z ~ Y _ 207 — v )
(g — v )2 — ( — (yp — yk (=" S W)y )
and simplifying, we obtain
2 -2 L ) N 2 -2
0 y—k2 ykz =T Z 2 y—k? ka — =2 Z 2 y—k2 ykz -2
Ye T Y — X" —X S YT U A T A #kyk"i‘yk —Yi Y

One can rewrite it as

2 2. 2 L 2 2.2
Yi Y X Yk Y = _
(e ) 5 (g + i) -

Ye — X Ye X = \Y 1=y,
-2, -2
yk yz
- 22( S+ b,
l;ﬁk‘ Z yk; yz

which is equivalent to

2 £ 2 N 2
Yk 1 Yk 1 } : Yk 1
=Xt wxt-1) = \yi-g -1 —\yi— vyl vy —1
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or

c N

s (VX s+l R A il S W yr Ul v 1
5 2t 2.2 +Z 2_2"’22_1 = Z 2_2+22_1 :
Yo — X YeX = \Yik T4 Yk iz e T Y Ykl

Now, in order to transform this expression into Trig. BQISM ([3.4)) we make a change
of variables

Yk > eXp Uk, 2 > expe;, X expé.

Thus, the mapping from Rat. BQISM (3.8) to Trig. BQISM (3.4)) is a composition

e’k — e Uk
U > — = sinh vy,
&l _ o€l
g — % = sinh g, (3.11)
§_ ¢
& ¢ 26 = sinh &.

Analogously, including p gives the mapping from Rat. BQISM' (3.7)) to Trig. BQISM’

B9)
v + p/2 — sinh(vg + p/2),

g1+ p/2 — sinh(e; + p/2), (3.12)
& — sinh €.

Generally, we refer to equations (3.12)) as the variable change #2, and note that (3.11]) is
merely a specialisation of (3.12)) with p = 0.

3.1.6 Variable change #3

Now, we define the variable change #3 to be a composition of operations defined so far:

310 311 3.5
Trig. QISM (£2.22 G0 pat. BQISM || Trig. BQISM 1;
Trig. BQISM' (3.6).

This results in the variable change given by

v > In \/ sinh®(vy, + p/2) — sinh®¢, (3.13)

£y s Iy fsinh®(e, + p/2) — sinh® €.
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3.1. BETHE ANSATZ EQUATIONS

Equivalently, we may take

310 35 312
Trig. QISM (£2.22 G0 gt BQISM q; Rat. BQISM/ 1;
Trig. BQISM' (3.6),

which gives the same. We refer to the (3.13)) as variable change #3.

3.1.7 Reduction to the rational, twisted-periodic case
Rat. QISM (2.29) is obtained by taking the rational limit of Trig. QISM (2.22) as
described in Section 2.3.4]

We can also obtain Rat. QISM (2.29) by taking the attenuated limit from Rat.
BQISM’ (3.7):

5+ ka+pvk+02/4 & szk+pvk+p2/4 'S

ll“k—51+:0“k_5l vi— v+ plog —v;)

Rescale the constant 6 = py/2, divide throughout by p/4 and consider p — oo. Then we
obtain again Rat. QISM ([2.29).

We may summarise the connections made in this section in Figure [3.2] below.

Trig. BQISM Trig. BQISM' Trig. QISM
#2 | | rational limit #2 | | rational limit rational limit
Rat. BQISM Rat. BQISM/ Rat. QISM

#1

Figure 3.2: Established connections between the Richardson—Gaudin models obtained
from the BQISM with diagonal reflection matrices.

It turns out that the limit labelled Rat. QISM is not equivalent to any of the other
five nodes in the diagram. This is deduced by knowledge of a particular solution of the

BAE. For the BAE (3.9), it was identified in [ILSZ09] that when 6 = N — 1 there is

39



3.2. CONSERVED OPERATORS

a solution for which y, = 0 for all k. Results from [RDO10] show that such a solution
where all roots are equal does not exist for the BAE (2.29). Consequently (3.9)) and ([2.29)

cannot be equivalent.

The most unexpected aspect of the above calculations concerns the parameter £. Re-
call that this parameter arises in the expansion of the variables £+, as given by ,
where £* are the free parametrising variables of the reflection matrices . The above
calculations show that & is a spurious variable which can be removed by appropriate
variable changes. In the next section we will show that it is also possible to remove the
¢-dependence from the conserved operators, but this requires an appropriate rescaling

and basis transformation in conjunction with the variable changes.

3.2 Conserved operators

3.2.1 The first family of conserved operators

Similarly to Section [2.3.2], the conserved operators 7; in the quasi-classical limit are

constructed as follows from the transfer matrix (2.44)):

lim (u — &;)t(u) = n*1; + O(n?). (3.14)

U—€j

To calculate these conserved operators, we impose the conditions (3.3]) on parameters £+

that appear in the reflection matrices (2.42). Note that (3.3)) implies that

lm{K*(u)K (u)} o< I.

n—0

This ensures that the transfer matrix (2.44) satisfies lim,_,ot(u) oc I, which allows the

quasi-classical expansion of the transfer matrix to obtain conserved operators.

Expanding K*(u) in powers of n as 7 — 0 then gives
K*(u) = K7 (u) + K5 (u) + O(), K~ (u) = Ky (u) +nK5 (u) +O@),  (3.15)

where we define

K () sinh(& + u) 0
! 0 sinh(¢ —u) )
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3.2. CONSERVED OPERATORS

K (u) = ((a + 5) cosh(& + u) 0 u)) 7

0 (o — 1) cosh(& —
Ko (u) = — sinh(& — u) 0
! 0 sinh(¢ +u) )’
) — (6 — %) cosh(& — u) 0
By () = ( 0 (5+%)cosh(§+u))'

Using the expressions of equations (3.15]) above and the quasi-classical expansion of L (u)

(2.24)), we may expand (3.14]) explicitly as

lim (u — ¢;)t(u) =

u—ej

eillar(e5 — 1) la; (0) K1, (g5)
_ K SHED) j J a\&j
ntra [ (8])£ ( 1a 6] + nkzj;Ll smh( . 5k) +

-1

<.

K1 (65)0a;(0)lar(e; — er) K1, (g5)
sinh(e; — e)

+ 17 + N K3, (€5)0a;(0) K1, (g5) +

k

1
K, (e5)00;(0) K1, (€5)ai (5 + €k)
sinh(e; + ¢)

M=

+1 + 11K, (85)0aj (0) K0 (25) | +O07).

>
Il

1

One can check that

try (K7, (5)0a; (0) K1y (g5)) =0,
tro (K, (5)0ak(ej — ek)laj(0) K1, (c5)) = tra (K7 (65)aj (0)lar (g5 — ex) Kiy(g5)) -

Thus, we have

i Z tra (K (e ar(es = )l Kiale)))

= sinh(e; — e;)

i ro (K, (£)0aj(0) K i, (25) lar (25 + 1)) n
sinh(e; + €)

k=1

+ tro (Ko (£5)0a; (0) K1y (g5)) + tra (K, (€)0a;(0) K, (5)) -

Finally, after computing traces, we obtain

£ sinh(e; + &) sinh(e; — &)
T Z sinh(e; — e;) (

K]

2cosh(e; — ) SES; + S ST+ S S:) +
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3.2. CONSERVED OPERATORS

c
1 ' ' B
+ ; m (2 sinh(e; 4 &) sinh(e; — &) cosh(e; + gk)Sj S —

— sinh?(e; + £)S; Sy — sinh?(e; — 5)5;5,;) +

+ (Oz sinh(2¢;) — %sinh(%)) S5+ (ﬁ sinh(2¢;) — %sinh(Zf)) Sz

t . 7_.
We rescale and denote 7; "9 = J , so that

J sinh(e; + &) sinh(e; — &)

c
tre 1 z gz - =
c .
1 sinh(eg; — &) _
+ —————(2cosh(e; +&;)575; — ——L—285FS —
; sinh(g; + &) ( (85 + €x)575¢ sinh(g; + &) 7 7F (3.16)
sinh(e; +§) _
_ BE T S) g-g+
sinh(g; — &)/ 7F *
(o + B) sinh(2¢;) — sinh(2¢) _,
sinh(g; + &) sinh(g; — &) 7
Thus, {T;Mg , J=1,..., L} are the mutually commuting conserved operators for Trig.

BQISM.

3.2.2 The second family of conserved operators

Note that we have only considered one of two families of conserved operators. The

second family is constructed as follows:

lim (u+g)t(u) = n*F + O(n°). (3.17)

U—>—Ej

Proposition 3.2. We have 7; = —7;, where 7; are given by and 7; by .
Thus, the two families of conserved operators are equivalent.

Proof. It is convenient to include the dependence on inhomogeneity parameters €; explic-

itly into the notation:

t(u, &) = tr, (K;(U)Laﬁ(u —ep) o Loy (u — 2)) K (W) Loy (u+ €1) -+ Log(u + 55)).
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3.2. CONSERVED OPERATORS

Consider t(u, §)T , where T' =t - - - t; denotes the transpose over all spaces. Using
(11, A" = try (AU12) =, (Als12)

and the fact that all operators are symmetric, we have

t(u, 5T = tr, (Lag(u bep) e Lor(u+e)) Ko () Lot (u — 1) -+ Log(u — €£)K;r(u)>
— tr, (K;(U)Laﬁ(u Ver) o Laa(u+ e)) Ko () Lot (u — €1) -+ Log(u — g£)> -
= t(u, —£).
It follows that

lim (u+¢g;)t(u, &) = lim (u+¢g;)t(u, —&)".

U—>—¢€j U——¢€j
Thus,
7(8) = 73(—8)" = sinh(e; + &) sinh(e; — )77 (~&)".

J
Let’s calculate 7, (—)” from (3.16):

L
tri T 1 2oz _ _
n = Zk# Snh(e, g (2eosh(es —en)Si S+ 57757+ 575 -

= 1 . sinh(e;+&) ..
_ ; m (2 cosh(e; + )55 S; — m&j% —
sinh(e; — &)
a sinh(sj- +£) % Sj) -
(a + B)sinh(2¢;) + sinh(28) .
sinh(e; — &) sinh(e; +&) 7

L
1 z Qz — —

- i _ 2cosh(e; +€5)57S; — MSJ“S_ —
oy sinh(e; + €) 7RIk sinh(g; + &) 7 7F

£
sinh(g; +&)
R T 5;) _

sinh(g; — §)
2cosh(2¢5) , ..o 1 sinh(g; + ) _ sinh(e; — )
TR e R AT D
(oo + ) sinh(2¢) o sinh(2€) .
z.

~ sinh(e; — &) sinh(g; +€) 77 sinh(eg; — €) sinh(g; + €)
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Consider

trig trigr T __ 1 sinh(s- + f) _ sinh(g- _ 5) -1 _
T &)+ 7 =E) = sinh(2¢;) (sinh(sj — &) sinh(sj- —l—ﬁ)) 15795

2sinh(2¢) .
~ sinh(g; — &) sinh(g; + &) 77
257 sinh’(g; + ) — sinh®(g; — €)
~ sinh(2¢;) sinh(g; — &) sinh(g; + &)
2sinh(2§)S%
~ sinh(g; — &) sinh(g; + €)

From this it follows that 7;(€) = —7;(£). O

Thus, we have shown that the second family of conserved operators obtained from
(3.17) is equivalent to the first one from (|3.14)).

3.2.3 Variable change #1

The variable change #1 (3.5, particularly €; — €;+p/2, gives the conserved operators
for Trig. BQISM":

L

trig’ 1 “SE Sy ;S
7 :gm(%%h(%—%wﬁfr% S +5750) +
£ 1
+ - 2cosh(ej + e, + p)S;S; —
;s1nh(€j+€k+p)( (€5 + &k + p)S; 5% (3.18)

_sinh(g; +p/2-¢) (4 sinh(g —I—p/2+§)SS+) N
sinh(g; +p/2+€) 7 "% sinh(g; +p/2 —€)77 7k
(a+ B)sinh(2e; + p) —sinh(2¢) .

sinh(e; + p/2 + &) sinh(e; + p/2 — &)

3.2.4 Attenuated limit

Taking p — oo in (3.18) yields the conserved operators for Trig. QISM ([2.26)):

L
> 1
tri § % gz +q- -GSt z
0T (e — e OO T WSS SIS 580 =20

where vy = —(a + 8+ N — L/2).
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3.2.5 Rational limit

The rational limit of the conserved operators for Trig. BQISM ((3.16|) gives the con-
served operators for Rat. BQISM:

L
ra 1 z z — -
it = Ze — (2878 + S S + 8757 +

P

L
1 ( se8i —¢ e] + 53 s+) (3.19)
i+ ek +¢77 &
2(a+ PB)e; 2§SZ
5? _ 52 J:

We rewrite this expression as

rat = 1 1 z 1 1 5]- 5 +
Py €j—¢€k EjteEg vy €j — €k 5]+gkgj—}-f

c
1 o +8\ gigr, 1 2
_ : = 9(8%)? —
+§<£j Ek £j+€k€j_£)5] Sk+2€j (57)
1 eg—¢ _ 1 g +¢ (oz—irﬁ)s 26
o S+ J S— S+ JSz 9%,
2eje+€ 77 25151 &’ =& g

In the spin-1/2 representation (2.16]) we can use the following identities:

I I I
+_—— z _+:——z Z2:—
SS—2—|—S,SS 5 S*, (S7) 1

Also note the following:

11 =& 25t
gj—¢er €gjterei+¢§ (52_5@(53“"5)7
1 1 g+E& 25—

gj—en eitene; =€ (f—ede;— &)

Then we obtain

L L
ra de; z2Qz 2e; Ek—i_é- — 5
SR PN (8 ST s 5+)

ki J Tk k#j J J

1 1 1 1 ¢ 1
- M<—+k92)——ﬂ<——52)+
de;  2e5e;+¢ 26, =&\ 2
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5—52 7o g
L L
4e; 2¢;
- Y sy 5 2(?153 = =tsrst) +
k#j “k WAy 3 Sk NS
I G+8 T 2at P gz
de;  €F — 6226] g3 — &2 g

g J _ J J
hry T3 Gk b 5 TSk NG e =t (3.20)
I 481 2a+p)e o
4 3 -¢22 e2 - &2 g

3.2.6 Rational BQISM and trigonometric QISM equivalence

Substitute

k#j k
L 2 2
_ € Tk gz LN . 1
—2252. 62SJ.S,CJF2<N—— $ -5
kA Ik
into (3.20]) to obtain
rat QZE te kSzSz Zﬁj 2532 (5k+€ 55 S+)
T =
J k#g?_z €]_|_£] —¢7i
L e 1 1€~+§2
2 N—— SF— -+ 22— )1
' ( EERE (4*2@—52)
Setting £ = 0 we obtain
L 2 2 L
ra €5 T €k pcrn 2e ek _ _
S t‘g 0_225; 825]Sk+282] Q(S;Sk"’_sjslj)"‘
k#j 9k ki#j
L 31
2 N—-——=—]8 ——.
+ (a—l—ﬁ—l— 2>S] 1
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The variable change ¢; — expe; gives Trig. QISM (2.26) with vy = —(a+ 8+ N — L/2)
(up to a constant term —31/4):
c c 1
€j7';at‘§:0 — QZCOth(éfj — &Tk)SjS,j + Z m (SjSI; + S;S]j) +
oy : j
L 3[
+2(a+B+N——) SZ—Z

Now let us start with Trig. QISM (2.26) and show that it can be mapped back into
(3.20). First of all, let us make a change of variables ¢; = In z;:

L
Z +zk 2z;z " n .
—22: +3 SEST 4+ S7SF) — 248z,
k#jzﬂz Zk( )

2
+ 22 225 .
Usmg = ?_— — 1 we obtain
22 2 .2
Zj k J k

:—2Zszsk+4z SZSk+QZ L (S7 S + 57 5E) - 208,
ki k] F

Furthermore, since
- c c

2) 5iS; =2 <N— 5 —5;) S: =2 (N— 5) S: —2(57)?
k#j

and (S?%)? = I/4 for the spin-1/2 representation, we obtain

c I
Sk+22 Wﬂz (S/ S, +8; S*)—2<7+N 2)5;+§.
k#j k

(1)

A change of variable z; — 5? — &2 gives the following conserved operators:

L e2 _ 2 / g 52 _ 52
2 Z £ S2S7 + 22 (SFSy +8;55) —
k:

2
Wty oy &5~ ek
E I
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Note that up to this point, all we have done is apply the Change of variables given in
2
£
3.10) on the €;. We further rescale each conserved operator 7' by the factor J 62:
E —

L 2 2 _ ¢2
_4§: szsk,+2§: VIS (grge 4 sosy) -
2y [2_ e
k#j k#j 5 en/e7 — ¢

L e g2 I
_2<7+N——> 52SJ+ 2_J€2§.
]

Consider a local transformation on the jth space in the tensor product

g;—¢
U; = diag I~ 1.

Under these transformations we have

U;S:iU; = 57,

UjSJ—‘FUj_l - EJ 2 ]+’
i f

Under the global transformation U = UU; - - - U, we find
T = UT(?’)U_I =
—42 SZSkJrZZ g + 55 SE) -
_ 5k 5] _|_§ J g J

L 52. ez I
—9 N-Z)_H g T
<7+ 2)53.—52 (=g

These are the same as 5]-7';"” Rat. BQISM (3.20), up to the constant term, taking into
account that v = —(a+ 8+ N — £/2). Thus, we have

2
(4) rat 5]-
Tj EJ _ g
j

I +§2 I
2 — &2 4

M[\Jb
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Finally, we can obtain

3.2.7 Variable change #2, rescaling, and a basis transformation

Our goal now is to demonstrate how to transform Rat. BQISM (3.19) back into
Trig. BQISM (3.16|). First of all, we make a change of variables ¢; =Inz;, { =Ilnx in
(13.16)):

S
3
Q
]
Y
[\
l\zw uNw
_|_
?rw
O}
SR
gfl

T S+))
Z - %

J

£
?T‘[\D

i 2
iz — 1 252 — Xz z5 =X

Bz —1) =0 = 1) . _
(X225 — 1)(25 — x?) ’

L 2 2
B Z5 + 2 zjzk,—i-l B
_22(2 2+ 2.2 SSk
J

L 2.2 2 2 2.2
25z + 1 22z 5 Xz —1
+§j<2g2—5%5,§— — 1( S+S + 2SS )+
+

P 2 Z]Zk

2 2
Zj%k o Zj%k ~j X S+Sf+
22— 22 2,2 142,21 ) 70"k

; k 3%k X"%j

2,2
Zj2g iz X7 —1 -
+ (22 2 Sj Sk

-z zzk—lz—x

22417 222 22— 2 222 %222 -1

p Tl T SN g T XA T Sgegh
2 —12 zj—1X2zj_1 J 7 Zj_lzj_XQ J i
2+ B)xP(z) — 1) s 223(x" = 1)

022 =D =) 7 (03 =D =)

Using STS~ =1/2+ 5% S-St =1/2— 5% and simplifying we obtain

2 | 2 z2z +1

trz k k 2

9= 2§:( ZQZI% )SSk
k#] ]

2
2= X" o
>\ Sj S,j] + (3.21)

2
k
2 _ .2 2,2 20,4 _
(zj XXy 1>I+2(f;jﬁ)x(? 12)5;‘
(227 — 1) (27 — x?)
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We begin with the the form (3.20) of Rat. BQISM, multiplied by ¢;:

c
7:(1)_5 rat_z S +Z 2 €k+£s+8— 55 S+
’ & kg 8’ : _gk €J+£ ! 5 !
I 5{ <a+6>jsz
22 2
4 el —-¢&%2 e} — &2
. 5 =% xX—x"
Now, let us make a change of variables ¢; — — §— —y
L —1\2
Az; — z; )
~(2) J J 2 Qz
’ ;(zj_zjl>2_(zk_zkl)2 ’
c —1y2
2(z; — 2, )
+ — J —
; (2 — 2 N2 = (2 — 2, )
_ -1 _ 1
O (e S o S e e sk 2
zj—z; FXxX— X! zj—z; —XxX+x!
A C 0 B\ e 0 B A GO 1 e 0
4 (=== X2 (-4 )= —x1)?
22—2._2
Then, rescale by ——2 5
(25 — i )
£ 2 2
A(z5 — 2
e e L
c 2 2
2z — 2
e
o (z =z )= (e —20)
_ 1 1
2 =% X=X 2 =% — X+ X
O T R A C kB0 ek 0 S S0 N e/ B
(25— 2724 (5 =22 = (x—x71) (5 — %) 2

' Sz,
(2 — 2 )P = (x = x71)*
Using the identities
2(27 — 2;%) i +zk 22 zk+1 QZk( Zj—1)
= 2.2
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2(zf —x7?) A P+ 28z - )
(=2 = (x—x1)? Z-x Zx-1 (F-)Ex3-1)

k#]
zk—zk +X X S+S +zk—zk1 X+x ! SS+
zi—z A x—x Zp— 2 —x+x
%_5—52{(%—j)+u LD G C Rt N O
(z—27)%4 (z =) (5 = X)X — 1) 2
( 1) .
+2(a+ B) sz,

Now we see that the first term already matches with the first term of (3.21). To match
the second term we need to make a basis transformation of the type U = U Uy --- Uy,

where

U; = diag(z;,1)

with
1 1: -1
Uy = diag(z; ", 1),

where x; € C. Under these transformations we have

U;SiUT = Sz,

US+U_ = z;5;,
-1 _ _—1¢o—

Uij Uj —.fll'j Sj'

To match the second sum in (3.21)) we need z; and z;, to satisty

iz — 1) 22 —1 Zi(z) — 1) Ze— 2 X — X 1x .
(ZF =)@ -1 22 =1 (2 =)z = 1)z — z]-_l Fx—x""’ ko
Ziap(zf—1) 22— RE -1 m—gt-x+xT

= — i Tk,
(=) -V —x> (GZ-2)EG8 Dz -z —x+x 1
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or

(= )z =27 x = x7)  alz - (m -z —x+x7h
Zk(zfxg—l)(zk—zk +x—x1 (2 -x)(m -z —x+xY
Bz )= —x) FH-xAEN -1
= o OS]
W (e —2,) (x—x1) E— X X
— 1=
We choose . X
x'_ZJ(Z]_Zj +x—=x")
/ zJQ-X2—1
Finally, we have
=) _ O -1 =
J
L 2 2
z2i+z 2izr 4+ 1
/ -z, zizp—1
k#j N
L 4
zizp(zs — 1 242
—1—22 2]k2<j2 2) {ngz S’S, + XSS+
k;ﬁj (Z] _Zk)(zjzk_ 1) Z]X
I ek B Bk I i O\ S S x(z -1
(2 —2;1)24 (zj —2')? (22 = x2)(22x2 — 1) 2
2o+ Y- )

which is the same as Tt”g up to the constant term:

=(4) _ _trig _ 232_22 {_(zj_]_l)Q‘f’(X X ) XQ(Z?_l) {_
o (z; — 2;1)%4 (z; — 2;7)? (22 = x2) (232 —1) 2

3

J

z]+1] 23 (zJZ—XQ X%f—l)
1

z;l—12 ;1— X2Z]2-—1 ZJZ—XQ
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3.2. CONSERVED OPERATORS

3.2.8 Variable change #3, rescaling, and a basis transformation

As in the case of the BAE, variable change #3 is defined as the composition which
leads to (3.13]). Combined with the appropriate composition of basis transformations and
rescalings described above, this leads to the following mappings for the conserved opera-

tors:

Trig. QISM (2.26) 228 Rat. BQISM (3.19) 2214 Trig. BQISM (3.16) 22l
Trig. BQISM' (3.13),

where the arrow labels refer to the subsections where the corresponding operations are
described.

3.2.9 Reduction to the rational, twisted-periodic case

In the rational limit of Trig. QISM (2.26|) we obtain the conserved operators Rat.
QISM (230):
£ 28:S8F+ SFSy + S5 S+

Tj = —275;
CRDIEREEET
k#j

We can also obtain these conserved operators via the attenuated limit from Rat. BQISM
(3.19). First introduce p by the variable change #1:

L
/ 1
at z — —
k]

= z2Qz 5]+p/2_§ + o— 8J+p/2+€ — o+
Zeﬁswp(2Sjs’“_ej+p/2+55j5’“_aj+p/2—55j5’“)+
2a+B)(e; +p/2) 2

G+oi-

Choose (a+ 3) = —yp/2. Then this expression reduces to (2.30) as p — oc.

Thus, the connections for the BAE (summarised in Figure also hold on the level

of the conserved operators.

Remark 3.3. For Richardson—Gaudin models an important object is the sum of the con-
served operators. Since both T/ (3.19) and T;Tig (3.16) turn out to be equivalent to T;
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

L

c c c
(2.26), the sums ZT;"“ and ZT;Mg are equivalent to ZTj = —272 Ss.
j=1 j=1 j=1

3.3 Eigenvalues of the conserved operators

We have shown, in the quasi-classical limit, the explicit connections between the BAE
and conserved operators associated with the rational limit of the BQISM for Richardson—
Gaudin systems, and the corresponding twisted-periodic trigonometric systems (Fig-
ure . We can also verify analogous connections between the eigenvalues of the con-
served operators. While this necessarily follows from the equivalence of the conserved
operators, it is useful as a consistency check as well as having the potential to provide

some alternative insights into the methods used.

The eigenvalues \; in the quasi-classical limit are constructed as follows from ([2.47))
(similarly to the periodic case in Section [2.3.3):

lim (u — e;)A(u) = 7*A; + O(1°).

U—€j

Let us substitute the expression (2.47) and compute the limits of all the components
separately. Let us start with a(u) and d(u) given by (2.49)). We have

sinh(u — g, — n/2) sinh(u + &, — n/2)

-

li — e, _
u1—>Hsl]<U £;) 11 sinh(u — &;) sinh(u + &)
2 L
— —g + nz coth(2¢;) + Z (coth(e; — i) + coth(e; + &) | + O(n?),
Py
lim (u _ 54) ﬁ sinh(u —& + 77/2) Sinh(u +e 4 77/2> B
u—e; J o sinh(u — &;) sinh(u + &;) =
2 L
— g + % coth(2¢e;) + (coth(e; — ;) + coth(e; + &) | + O(n?),
[y

sinh(2e; — n)sinh ( — & +¢; +n(B+1/2)) =
= (sinh(2e;) — neosh(2e;)) (— sinh(¢ — ;) + n(B + 1/2) cosh(é — €;)) + O(n*) =
= —sinh(2¢;) sinh(§ — ¢;) + n(5 + 1/2) sinh(2¢;) cosh(§ — ¢;) +
+ 1 cosh(2e;) sinh(§ — ;) + O(1°),
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

sinh(2e; +n)sinh ( — & —&; +n(B+1/2)) =
= (sinh(2¢;) 4+ ncosh(2e;)) ( — sinh(§ + &;) + (8 + 1/2) cosh(§ + €5)) + O(n°) =
= —sinh(2¢;) sinh(§ + ¢;) + (8 + 1/2) sinh(2¢,) cosh(§ +¢;) —
— ncosh(2e;) sinh(€ + ¢;) + O(n?).
Then we have
lim (u — <,)a(u) =

= [ — sinh(2¢;) sinh(§ — ;) + n(8 + 1/2) sinh(2¢;) cosh(§ — ¢;) +

+ ncosh(2¢;) sinh(§ —¢;) + O(nz)} X

X

5 c
_ g + UZ (coth(%j) + Z (coth(e; — ex) + coth(e; + Ek))) + O(n®)
oy

= gsinh(%j) sinh(§ —¢;) — %2(6 + 1/2) sinh(2¢;) cosh(€ —¢;) —

2 2

— % cosh(2e;) sinh(§ —¢;) — UZ cosh(2e;) sinh(§ —¢;) —
9 c
— % sinh(2¢;) sinh(§ — ¢;) Z (coth(e; — ;) + coth(e; + &) + O(n?)
k#j

and

sinh(2e; + ) lim (u — ;)d(u) =

U—€j

= { — sinh(2¢;) sinh(§ + ¢;) + n(f + 1/2) sinh(2¢,) cosh(§ + ¢€;5) —

— ncosh(2¢;) sinh(€ + ¢;) + (9(7]2)} X

2
no.n
X 5 + Z (COth(2€j) +

(coth(aj — ey,) + coth(e; + 5k))> + 0(773)] —
= —g sinh(2¢;) sinh(§ +¢;) + %2(5 + 1/2) sinh(2¢;) cosh(§ + ¢5) —

2 2
— % cosh(2¢;) sinh(§ +¢;) — % cosh(2¢;) sinh(§ +¢;) —

L
k]

2 c
— UZ sinh(2¢;) sinh(§ + €;) Z (coth(e; — ex) + coth(e; + &) + O(n?).
Py
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

Consider

sinh(§Y +¢; +1/2)  sinh(§ +¢; +n(a+1/2))
sinh(2¢;) B sinh(2¢;) B
_ sinh(§ +¢;) +n(a + 1/2) cosh(§ + ¢;)
B sinh(2¢;)
sinh(§* —¢e; +n/2)  sinh(§ —¢g; +n(a+1/2))
sinh(2¢;) B sinh(2¢;) B
_sinh(§ —¢;) +n(a+1/2) cosh(§ — ;)
B sinh(2¢;)

+ 0,

+O(n).
Then

lim (u —g;)A(u) =

U—E€5

= g sinh(2¢;) sinh(§ —€;) — n(B8 + 1/2) sinh(2¢;) cosh(€ — ¢;) —

— 3777 cosh(2¢;) sinh(§ —¢;) —
L
- gsinh(Zsj) sinh(§ — ¢;) Z (coth(g; — ;) + coth(e; + &) + O(n)
k#j
cosh(& +¢,)
sinh(2¢;)

X

" sinh(& + ¢;) (e +1/2)

sinh(2¢;) 8

+O(n)

N
X |[14+n Z (coth(g; — v;) 4 coth(g; +v;)) + O(n?)
i=1

+

+ g — sinh(2¢;) sinh(€ + €;) + n(B8 + 1/2) sinh(2¢;) cosh(€ + ;) —

— 3777 cosh(2e;) sinh(€ +¢;) —
L
_ gsinh(%j) sinh(€ +¢;) Z (coth(e; — ;) + coth(e; + &) + O(n)
k#j
cosh(§ —€5)
sinh(2¢;)

X

X S—i@(—giiﬁJrn(oﬁrl/z)

I sinh(2¢;) +00r)

X

X [1— nz (coth(e; — v;) 4 coth(g; + v;)) + (9(772)] =

— %2 (a+ B4 1)(sinh(€ — ¢;) cosh(€ + &;) — sinh(§ + ¢;) cosh(€ — &5)) —
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

— 3 coth(2¢,) sinh(§ — €;) sinh(€ + ¢;) +

N
+ 2sinh(€ — ¢;) sinh(§ + €;) Z coth(e; — v;) + coth(g; + v;)) —

i=1

c
— sinh(¢ — ¢;) sinh (€ + ¢ Z (coth(g; — i) + coth(e; + &) | + O(n?).
k#j
1

It gives the eigenvalues for Trig. BQISM up to a factor of Sinh(z; & €) sinh(z, — €) as

follows:
)\t.rig —
j

| S

(coth(aj — &) + coth(e; + 5)) + ;COth(zgj) +

+ % Z (Coth(a?j — Ek) + COth(Sj + 5k)) - (3.22)

— ) " (coth(g; — v;) + coth(e; + v;)),

where 0 = —(a+ [+ 1).
We can check that the constant terms agree in the eigenstates and the eigenvalues. To
®L
A 0
do this, we need to check that the action of T;”g on the state Q = (1) is equal to the

constant term in (3.22). Namely, that

igey [ 1 £ 1 1 sinh(g; + &)
70 = (5 kzﬁ (coth(e; — e;) + coth(e; + &) + 5 coth(2e;) — Sh(2e)) sinh(gj- "
1 (a+ f)sinh(2e;) 1 sinh(2¢) O —
a §sinh(8j + ) sinh(g; — &) * §sinh(5]~ + ) sinh(g; — &) B

— ( — %(a + B4 1)(coth(g; — &) + coth(e; + &) + gcoth(Qsj) +

c
+ % Z (coth(e; — ex) + coth(e; + Ek))> Q.

K]

Indeed, by making repeated use of the identity

sinh(z + y) = sinh(z) cosh(y) + cosh(z) sinh(y)
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

and other similar identities for hyperbolic functions, we may easily check that

B sinh(2¢;)
coth(e; — &) + coth(e; + &) = sinh(e; + &) sin]h(sj —§)

and
1 sinh(g; +§) | 1 sinh(2¢)
sinh(2e;) sinh(g; — &) 2sinh(g; + &) sinh(g; — &)
1 sinh(2¢;)
= coth(2¢;) — = . .
coth(2e;) 2sinh(e; + &) sinh(e; — &)
Therefore, T tmg Q= /\tmg Q with A; 9 given by equation ((3.22)).

3.3.1 Variable change #1

We can obtain Trig. BQISM' by applying the variable change #1 given in (3.5)):

o6 3
A7 = 5 (coth(e; + p/2 = &) + coth(e; + p/2+€)) + 5 coth(2; + p) +
1 L
- th(e; — th(e; -
-, }k#; (coth(e; — ex) + coth(e; + &5, + p)) (3.23)

N
- Z (coth(e; — v;) + coth(e; + v; + p)).

=1

3.3.2 Attenuated limit

Now, as p — oo in Trig. BQISM' (3.23), we obtain Trig. QISM ([2.28]):

L N
rig’ 3 1
X 424 TS (coth(e, — ) +1) = 3 (cothe, —u) 1) =
ki =
1 & Y
=5+ 5 ; COth(€j - €k z; COth - Uz
J =

where vy = —(a+ 8+ N — L/2).
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

3.3.3 Rational limit

The rational limit of Trig. BQISM (3.22) gives Rat. BQISM:

L N

de; 3 £; 2¢;
)\rat — . 7 J . 324
J 6—5 +45 +§52—€z ;gﬁ—vf (3:24)
Or, multiplied by ¢;:
e? 3 & el N o 9g2
rat
€j>\j :—52—J§2+1+Z—52—J82_Z€2 J 2 (325)
J ki I k=177

3.3.4 Equivalence of the rational BQISM and the trigonometric
QISM

Set ¢ = 0 in Rat. BQISM (3.25):

£ 2
3 e“ "
6)\7‘at :5+_+§ J _§ J .
’ ‘5 ’ 4 k#j 55_52 i 5?_1)2

2 1 (e +e
Using — I 5 —( 2 k—f—l) we obtain
€ — € 2 sj—gk

L N 2 2
3 (£ 1 247 €5+ v;
rat ] J ?
=Y |€0_5+4+—— 55 gy Rl D v 2
k#j € k i1 55 Y

Making a change of variables €; — exp ¢, we obtain Trig. QISM (22.28)) up to a constant
term —3/4:

L 3 1
ngTat}E =0 (a TE+N - 5) “1t3 ZCOth(gj — k) - ZCOth(ej i)
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

Now, we want to turn Trig. QISM ([2.28)) back into Rat. BQISM (3.25). We start with
Trig. QISM ([2.28) (with a change of variables ¢; =1Inz;, v; = Iny;)

1N 22+ N 22 4y
AP IE e E P B
k#j ] k i=1 'L
_7+N—§+1+Z —22 o
] ]

Make the change of variables

zj [ = €2, yi o — €2

This gives
L1 g2 2 N g2 _¢2
A(”—%LN—EJF + ; 5—22; 52
g2
Then, rescale by — J 5
e;—¢
1 €3 £ 2 N2
2 2)et—¢2 ;53—62 2_;53—022
Choose v = —(a+ 4+ N — L£/2), which leads to
L 1 1 3 3
N—-——+4+-=- == - D+-=0+—.
7+ 513 (a+6)+2 (@+f+1)+5=0+7

Thus,

3) 3 e £ g2 N g2
J J
A= (5+ ) 52+Z _52_22:5?_@2

is the same as Rat. BQISM (3.25) up to a constant term. Hence, Trig. QISM is
equivalent to Rat. BQISM in the quasi-classical limit also on the level of the eigenvalue
formula. The difference of the constants in the eigenvalues

3 3ei+ &

3
)\(3)_ )\Tat = J _ - _Z
;T 222 4 d2—¢@
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

is the same as the action of the difference of the conserved operators on the reference

2 2 2 2 2
Wg  orag_ (G L, GHEL 1N (35N
BT (5?—522+5?—§22 1 iez—¢ )"

state:

3.3.5 Variable change #2

Here we want to transform the eigenvalue formula Rat. BQISM (3.24) back into
Trig. BQISM (3.22)). We start with Rat. BQISM in the form (3.25)), multiplied by ¢;:

. de? 3 K &2 N oo9g?
M) =gt = I 4 =4y ol
279 5?—62 4 ;&?—5% ;5?—"0?

We follow similar steps as in the case of the conserved operators, without the basis trans-

formation. Start with the change of variables

—1 -1 1
Rj = Zj Yi — Y; X—X
e T
© g " 2 ¢ 2
This gives
_ C _
5\(2) _ 5(2] — Zj 1)2 n § n Z (Z] - Zj 1)2 .
e e e A R~ PR E e P
N _
2(z; — z; h)?

-2

i=1 (Zj - Zj_l)2 - (yl - yz’_1>2'

z2 — z._2
Now rescale by —2 fl 5
zj—2;)
c
56 _ 6z —27) B4 > — -
(=272 = (x —x71)? 4z -2z oy (z =2 P = (=)
i 2z} — z;7)
2 =5 ) = i~y )
Using the identity
(22 — 272) 1 (2?2 +y* 2 +1
r—x ) —(y—y- e — L7Y” —
( 2 (y—y 12 2\a2—y? 202 — |
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

we obtain
s 0 (HEXE A+ 3 22—z 1[4 22+
A 25 2 _ 2 2.2 _ | +Z ,_ —12""52 2_2+22_1
F—X 2iX (2 zj) oy 2=z 2%

(DY gyt
e N e VA

This is the same, up to a constant term, as Trig. BQISM (3.22)) with the variable change

gj=Inz;, v =y, {=Inyx:

32) +1 li(z?—%zi_i_zfzile)_

)\m.gzé <z]2-—|—x2 z?xQ—Fl) 3z/+1
2\27 =2 Zx*-1 22] -1 2k;7éj -z -1
i(zf—l—yf z?yf—irl)
= \5 v Gy -1)
We have g 22 gt
-l (3.26)

5\(3) . )\tm'g _ 2. % 7 )
4(zj—zj_1)2 225-1— 1

To check that the constants match with the constants from the conserved operators we
3.26)) above with the action of 73(4) — Tj”g on Q:

need to compare the expression

(7(4) _ T;m'g) a_ (LA-a 1o P NE -
(7 —2)? (27 =X (x> — 1)
2
J

J J 4(z; — zj_l)? 2 zj— 2;
2

_1z§-‘+1+ 25 -X° X’z -1 0
22 =1 2z} -1 2 '

This expression is equivalent to (3.26]) provided the following identity holds:

+
XPzi—1 2 —x

Rl S (O e Cp S NP S G Rt VI
G-l 205572 2 (% —2) (5 = x) (N - 1) 3.27
— J J J _

Z?_1<X2Z?—1 Z?—XQ)

Simplifying the left hand side of (3.27]) we find
Z+1 1 22—z 12—z

—1_2(zj—2]71)2_2zj—|—z;1'

<.

z

NN
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3.3. EIGENVALUES OF THE CONSERVED OPERATORS

Modifying the right hand side of (3.27)) yields

e —g P+ -2 -1y (ﬁ—x2+ﬁﬁ—1>:
2 (2 —21)? (22— X)X —1) 2 —1\x22 -1 22—y
NG e R S O S P G TR Ry
2 (y-)) - -1)
1 (2 = X*)* + (27X — 1)°

(zi— 2 )z +2") (=3 -1)

L+ )X - D 500 -1
2(z— 2" (2 —xAEN-1)

(25 =X (x> — 1)
(22422422 (2 — 1) + (27 + 2,7+ 2)27 (> — 1) = 2(22 — x?)? —2(z3x* — 1)?
z z

(
(zi+ 2 ) (P =12+ 22(x* — 1)) — 2(27 — x?)? — 2(z7x* — 1)? _
(
? )
POz 2 ) = ) (=2 - 1)

(5 + DX (2 =5 P+ (5 + D0 -1 +
22 - 124 2203 - 1) - (2 = )P - (¢ - 1)) =
= (DX -4 )+ (D -1+
+2[XQZ;-1+X2+Z]2X4+Z? —z?—x4—x4z;*— 1] =
= (5 + DXz — 27 )+ (5 + DO - 1)° =
2740 - D+ 22 1) =222 - D42 — 1) =
= (z;-1 + 1)x*(z — z]-’l)Q + 2X42j(zj — zj’l) — sz(zj — z;l) +

+(C =D [+ DO - 1) — 2% +2] =
7+ DXz — 2 )+ 20 = )z — ) = (F - DO+ (7 — 1) =

A DN — 2 )+ 250 = 28 - (V- DR+ 1)) =
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Thus, the right hand side of (3.27)) is

(2 — 2 (2 = X)X - 1) 1z

2(z; — zj_l)(zj + zj_l)(zj2 - XQ)(ZJQ-XQ —-1) 2 zj + zj_l 7

verifying that (3.27)) holds.

3.3.6 Variable change #3

The variable change 3 is obtained in the same way as for the BAE and conserved
operators, described in Sections [3.1] and [3.2]

3.3.7 Reduction to the rational, twisted-periodic case

The rational limit of Trig. QISM (2.28) gives ([2.31)

N

A= Zsj—sk_gsj—vl

The rational limit of Trig. BQISM’ gives Rat. BQISM'

3(e;+ p/2) -

(e + /2 —

_ 2(ej + p/2)
; (€5 +p/2)* = (vi + p/2)*

€j —|—p/2

2 e+ pJ2P — (et /2P
(3.28)

/ 3 1
rat
)\j = 5

+ +
(2¢; + p)

Choose § = py/2. Then we see that, as p — oo, (3.28) turns into (2.31)).

Thus, the connections illustrated in Figure also hold for the eigenvalues of the

conserved operators.

3.4 Summary

In this chapter we have studied the spin-1/2 Richardson-Gaudin system as the quasi-
classical limit of a generalised BQISM construction. In this manner we uncovered some

surprising features, in particular, that the boundary trigonometric system is equivalent
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3.4. SUMMARY

to its rational limit. Additionally we found that the twisted-periodic and boundary con-
structions are equivalent in the trigonometric case, but not in the rational limit. One con-
sequence of this finding is that for the spin-1/2 Richardson—-Gaudin system the BQISM
formalism does not extend the integrable structure beyond that provided by the QISM

formalism. This is an unexpected result, in contrast to the Heisenberg model.
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CHAPTER 4

Rational Richardson—Gaudin models with

off-diagonal reflection matrices

In this chapter we study Richardson—Gaudin model obtained in the quasi-classical limit
of the BQISM construction with rational off-diagonal K-matrices. We construct a family
of mutually commuting conserved operators and show how they lead to an integrable
generalisation of the p + ¢p Hamiltonian allowing for interaction with the environment,

thus, giving a physical interpretation of the constructed model.

First of all, let us specify the main ingredients of our construction. One can check

that the following K-matrix| satisfies the first reflection equation ([2.32a]) together with
the rational R-matrix ([2.3)):
K (u) = §+u Yu ‘
pu & —wu

Then, K*(u) = — K~ (—u — 77)|§_H_€+ bt grsgs AUtomatically satisfies the dual re-

flection equation (2.32b)). Thus,
+ +
K*(u) = (5 tutn ¥ <“+">).

Ppt(u+mn) & —u—n

As before (see Section [2.4) it is convenient to make a variable change u — u —n/2, ¢; —

'We will not introduce new notation for the K-matrices in each case, but we will specify them in the
beginning of each chapter.
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4.1. ATTENUATED LIMIT

£; —n/2 and re-define all functions taking this into account:

K- () = (5‘_+u—n/2 d}_‘(U—n/?))’ (1)
¢~ (u—mn/2) & —u+n/2
ot(u+mn/2) £ —u—mn/2

The transfer matrix in this case is (2.44)) with K-matrices given by (4.1]) and the rational
Lax operator ([2.18)):

t(u) = trg (K (W) Lag(u —eg) -+ Lar(u — 1)K (W) Lot (u+€1) - Lag(u+ez)).  (4.2)

The plan for this chapter is the following. First of all, we discuss how the attenuated limit
works in this case. Then we construct the conserved operators in the quasi-classical limit
(see expression below) and prove that, like in the diagonal case, the second family of
the conserved operators is equivalent to the first one (see Proposition below). Next,
using the fact that the rational Lax operator is invariant under local basis transformations,
we bring one of the K-matrices to the diagonal form and simplify the expression for
conserved operators to . In Section we show how to construct a generalisation
of the p + ip Hamiltonian as a linear combination of these conserved operators, which
includes extra interaction terms. In Section 4.2.5 we discuss a physical interpretation of
these extra terms as interaction of the system with its environment. Finally, in Section 4.3
with help of the recently developed off-diagonal Bethe Ansatz method [WYCS15], we

calculate the spectrum of the Hamiltonian subject to the corresponding BAE.

4.1 Attenuated limit

Let us investigate the attenuated limit of the transfer matrix (4.2) above. Firstly,
note that the rational Lax operator (2.18) Lq(u) — I, as u — oo. Let us rescale the
K-matrices (4.1)) in order to take the limit:

Ky - L <5_+ u=n/2 ¥ (u= n/2>) |
u\o (u—mn/2) & —u+n/2

K*(w) = (ﬁf“w w:(um/m) ,
u\ot(u+n/2) & —u—n/2
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4.1. ATTENUATED LIMIT

Then, in the limit as © — oo we obtain

Thus, from (4.2)) we have

p—00 1 ¢+ 1 w_ _

tm)—mra((w —1>aL“£<u_€£)'”Lal(u_gl) <¢‘ —1))_
(Y (Y )
_tra<<¢— —1>a<¢+ —1>QLM(U ot 1>>_

(1) e taee)

To obtain the twisted-periodic transfer matrix ({2.9))

t(u) = trq ((6? €Sv> Lac(u—eg) -+ Lai(u— 51))

1 ot + -y
v v v into M = ¢ 0 . Note that
o — ¢t 1+ Yt 0 em

the rational spin-1/2 Lax operator (2.18) is invariant under the local basis transformations:

we need to transform M =

XoXiLoy(w) X, ' X, = Loy (u)

a

for any invertible X € End(C?). Thus, we can rewrite the transfer matrix as follows:

t(u) = tr, (MaLaE(U —er) Lot (u — 51)> =
= tro (Mo XaXeLoc(u = 22) X, X7+ XoXi Lt (= 1) X, X7 1) =
= X Xyt <MaXaLa£(u — ) La(u— 51)X;1> X7l X =
= Xpoo Xyt <Xa_1]\~4aXaLaﬁ(u — ) Loy (u — 51)> X7l X7
Finally, choose X € End(V) so that X 'MX = M, to match it with the twisted-periodic

case.
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

4.2 Construction of conserved operators and the Hamil-

tonian

Unlike previous chapter where we started by considering the BAE, here we start

directly by considering the quasi-classical limit of the transfer matrixﬂ We require (cf.

Section [3.2.1]) that the K-matrices (4.1)) satisfy the condition
lm{ K" (u)K ™ (u)} < I, (4.3)
n—0

which allows the quasi-classical expansion of the transfer matrix (4.2)) to obtain conserved

operators.

Assuming the following dependence of the parameters on n:

EF=C+na, v =940y, ¢ =d+n)

(4.4)
§=—=§+nB, v =v+nd, ¢ =9¢+nu,

we can see that the condition (4.3 is satisfied:
ou  E—u ou —&—u

KX (K™ (u)],_, = (£+u v ) <_€+u v

) = (W (14 y¢) — &)1

Now, expanding the K-matrices in 1 we obtain

K*(u) = K (u) + nK5 (u) + O(n°) (4.5)
with
K (u) = (i;;u gw_uu> , Ky (u) = ()\0;125//22 75:?7;) :
and
K™ (u) = Ky (u) +nKjy (u) + O(n°) (4.6)
with

Kf(u):<_€+u W >’K2_(u):<5—1/2 5u—@/)/2>'
ou  —E—wu pu—¢/2 B+1/2

2Studying the BAE and the eigenvalues in the off-diagonal case requires more advanced techniques,
which we will discuss in Section
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

For the Lax operator (2.18) we have

S7 ST
La(u) =1+ g&u with £, = (Si fg) . (4.7)
l M

Remark 4.1. Taking the quasi-classical limit of the reflection equations (2.32)) gives the

following relations between K& (u) and K5 (u). From the n-term we obtain

e (B (0K (0) — K (0) () + o (K () (0) — Ky (0) 5 () = 0,
L (KA — K0 KA @) + 1 (K (0 () ~ K () @) =0,

while from the n*-term we obtain

L (G ) K () + K () Kv) — K0) K () — Ky (0K (w) +

L (Kl K (0) 4 K ) Ko v) — Ki0) i ) — K ()00 = 0,
(KA (W) + K () K5(0) — K () — K35 (0)K5 () +
b (ARG () + KA K() — K505 (1) — K ()G () =0

Note that for this calculation we temporarily changed the indices (1,2) in the reflection
equations (2.32)) to (a,b), so that they do not get confused with the indices (1,2) in the
quasi-classical expansion of the K-matrices (4.5)) and (4.6)).

4.2.1 The first family of conserved operators

In the quasi-classical limit, the conserved operators Tjﬂ are constructed in the usual
way from the transfer matrix (4.2)) (same as (3.14)) in previous chapter):

lim (u — &;)t(u) = 7275 + O(1°).

U—E

3We will recycle the notation for the conserved operators and their eigenvalues.
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

Substituting (4.5)), (4.6) and (4.7)) into (4.2) we obtain

aE akeaKa<€)
i (0 — <)) = 1ty | e agRin(er) 41 3 20 st

k=j+1

1a 5] gajgakKla(Ej)
— €

+ UKL(%)E iKia(g5) +

5] gaJKla(‘gJ)gak
€j + €k

+ K1 (e)laj Ko (e5) | + O(°).

2_3

One can check that

tra (K7, (5)laj K1, (g5)) = 0,
try (K, (e5)anlajKio(€5)) = tra (K15 (g5)lajlan Kig(g5)) -

Thus, we have

c
try (K, (e)lanlaj K1g(g5)) (el K, (g5)a
Tj:z (1(J)kJ1 J Z Kia(g; Jl(j) k)+
k£j 5] — &k o €J —+ Ek
+trg (Ko (e5)lai K1a(€5)) + tra (K (e5)laj Kou(g5)) -

Computing the traces gives

tra (KTo(ej)arla; K1o(25)) = (1 +vo)ef — €2) (2575% + S S, + 575),

tra (K15 (65)laj K1a(ej)ar) = 2(e5 + &)(e5 — §)S7Si — (g5 — €)°S) Sy, — (e +€)*S; S +
+20¢; (g5 + )i S+ (g5 — ) SFHSE) +
+ 2¢¢ ((5j +&)S; Sk + (g5 — é)SjSk_) +
+e; (V*S] S+ 6575 - 2w¢5;sz) :

tra (K50()lajK1a(e5)) = (2085 — €+ (M) — Wb) 7)S;

((aw VE)e; — —5 + €

((o«ﬁ X)ej — —§ Ae?
tra (K35 (65)laj Kaales)) = (285 — &+ (90 — WL) 7)S; +

)

)
((6¢+6£ ——5 65) +

)

((mwg Py e



4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

Summing these up, we obtain a family of conserved operators for the rational Richardson—

Gaudin model with off-diagonal boundary:

255S;+S) Sy +5757) +

(1 g3 —¢?
—Z (1+v¢9) 5(

5 — &
ktj k

L
#2205 — ey~ 0P — P+
=1

+ 21be; ((sj + S)S?SJr + (g — 5)5*5;) +
+20¢; ((e5 + €)Sy i + (5, — )55 ) + (4.8)

25 (255 + 7S], — 2008S7) ) +
+ (2(a + B)e; — 26 + V(A — p)e] — oy — 9)e)) S5 +

+ (Yo + B)ej — E(y — 8)e; — €+ (v — 0)e3) Si +
+ (pla+ B)ej — N — p)ej — o€ — (A — p)e3) S5,

Remark 4.2. Assuming spin-1/2 representation we obtain the following expression for

the sum of the conserved operators (cf. Remark n Chapter@for the diagonal case):

L

8 +e2 —2£2 B
ng—2;k;1 S, S38% —
c
> Z £; —|—5k( _5)2+<5’“+€>2)5;r5k+(<€j+f)2+(€k—§)2)5j5,j> +
j=1k=j+1 7
L L

+2) )

jlk]—l—lj

( ej(e; + &) + exler — §)) (waSZ + ¢S;Sl§) +
(e = O+ eulen + ) (075 + 08757 ) +
2 2

L
> 2 5 (Ws;s,j + ¢*S; S, — 2w¢SjS,§) +
=j+

+1

Mh

+
1 k=

<.
Il

+ 2 (2a+ Bz + (A = pe] — by = 0)e) S5 +

.th

1

<
Il

(v(a+ Bley = €0r= )y + (1= D 57 +

IVE

+
1

<
I

(G + B)e; = EN = )z = (A = p)ed) S5

+
M-

1

<
Il
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

Remark 4.3. To obtain the diagonal limit we set p =19 =0, y=06=A=pu=0. Then

(@ will reduce to

L

1 zQz — -
(5 =GO | ) (25Si+ SIS +5750) +
ki
= gj—§& gj+§
25:8; — L—8F 5y — L —=578¢
+k=151+€k< s e+ ‘ g =&’ k)+

2(0& + 6)5]‘ — 25
(g5 —&)(; +§)

= (g — &) + 7™

55

Up to a scalar it 1s the same as .

4.2.2 The second family of conserved operators

Note that we have only considered one of two possible families of the conserved oper-

ators so far. The second family is constructed as follows from the transfer matrix (4.2))

(same as (3.17]) from Section [3.2.2)):

lim (u+e;)t(u) = 1°7; + O(n?).

U—>—Ej

Also in this case we can formulate the following proposition:

Proposition 4.4. The second family of conserved operators is equivalent to the first, in

particular, 7, = —7;.

Proof. We start in the same way as in the proof of Proposition 3.2, First of all, denote
t(u, &) = tr, (K;(u)La[;(u —ep) o Lan(u — 2)) K () L (w4 €1) -+ Log(u + €£)>_
Then, consider t(u, )T, where T =t - - -t denotes the transpose over all spaces. Using
(tra Ag)1 = tr, (AL = tr, (Alati )

the fact that the rational Lax operator is symmetric:

\T \T z —
Ly = 2 (WEISDT ST ) L st wS ) ),
u \ n(S)) u —n(S7) u\ nS"  wu-—nSf
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

and an observation that K+ (u)” = K (u)|y+e+ and K~ (u)T = K~ (u)]y-rs4-, we obtain

tmff:w%(@Au+q)~Lﬂm+fQKﬂ@r%ﬂu—q)~LMW—5MijF>:

= tr, (Kj(u)Laﬁ(u +ec) - Lop(u+ep) X

Prosgt g d—

X K, (u)Lai(u—e1) -+ Lag(u — 51:))

= t(u, =) |yt st s -
Thus, we obtain the following equality:

t(u, &:) = t(u, _aT|w+'—>¢+7’¢'_’—>¢_ .
It follows that

lim (u+¢;)t(u, &) = lm (u— (—¢;)) t(u, _QT‘¢+H¢+,¢—H¢— :

U——€j U——¢j
Thus, we have
7i(€) = Tj(_g)T‘¢+»—)¢+,IZJ_?—>¢_ - Tj<_5)T|wH¢,7H,\,5HM'

In order to compute 7() = 7;(—&)7| brbprosy L€U us first rewrite the expression (4.8)

in a more convenient form (separating the term with k£ = j from the second sum):

£o(1 g2 — ¢2
Z( +P)e; 5(

7(8) = 25787+ S5 S + 575 +
It €5 — €k
L
1 z z — —
T Z e +ep (2(5j +&)(e; —€)SiS; — (6, — &S Sy — (6, +8)%S; S+
k#j 7

+ 205 (g5 + €S5S¢ + (g5 — €) S SF) +
+2¢2; ((g; + €Sy S + (65, — €)S; 9% ) +

+ 5]2- (@bQS;“S,j + qszj_Sk_ — 2053 57) ) +

1
+ 5 (2o + 006~ 0187 - (- 978787 - (e P55 57 +

+2¢e; (55 + &) S8 + (¢, — €S/ S5) +
+2de; (5 +€)S; S5 + (5, — €)S;S;) +

12 (QASH) + 6(S7)? — 200(57)2) ) ¥
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

+ (2(a + B)gj — 26 + V(A — p)ef — ¢y — 8)e3) S +
+ (Ve + B)ej — E(y = 8)gj — & + (v = 0);) S +
+ (6o + B)e — E(A = plej — 0§ — (A — p)ej) S5

Using the commutation relations [S%, ST] = ST and [S%, 57| = —S~ we can simplify

i(HW)ei—é(

O =D T (SIS 5,5 +
kg ik
L
(2(5j +E)(e — €S} — (e — %S Sg — (e +€)°S; 57 +
vy €j + €k
: . 2 Q+ R + Qz
+ 205 ((g; + €S]8y + (5 — S S) +
+2¢¢; (e +€)S; Si + (65 = £)S58;) +
+e2 (V2SS + 6*S7 Sy — 20982 S;) ) +
1 - —
g (e 06— 95— e~ 0875] (e + €575 +
J

+ 20e; (2,(S387F + 5752) + £S7) +

+20¢; (e;(S75; +5755) +£57) +

£ (PS4 (57 — 200(50)?) ) ¥
+ (2(a+ B)e; — 26 + (A — p)es — (v — 6)e37) SE +
+ (Yl + By —E(y = O)g; — &+ (v — 0)e3) S; +
+ (ola+ B)e; — EN — p)e; — o€ — (A — p)ef) Sy

Now, one can compute 7;(€) = Tj(_aT‘w—mb YA S’

L 2 2
75(8) = — Z (L+ve); —¢ (28:8; + 5 S, + S78¢) —

Ej — €k

c
a Z €; Jlr Ek (2(€j — (e + O SE = (5 + 9SS — (6, =S/ S +
h=1

+ 2e; (65 — ST i+ (6, +6)S;S) +

+ &5 (V2S] S+ ¢SS, — 200S7SF) ) —
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

- % (2<6j — ) (e; +&)(S:)? — (g5 +£)2SFS; — (5, — S ST +
+ 20, (55(S3S5 + 57.57) —€57) +

+ 20 (e,(S555 + 57°57) = £857) +
+&5 (0°(S7)" +9°(5)) — 269(S7)%) ) i

+ (=2(a + B)e; — 26+ p(y — 8)e? — (A — p)ed) Si +
(=v(a+ Bej +&(y = d)e; —wE — (v = 0)F) S +
(=éla+ B)ej + EN = mej — ¢+ (A — p)es) S

After computing the sum

+
+

@)+ 56 = 5 (65 + 6 = (6 — ) 157, 551 + 4ves6S] + 4085 ) -

—AEST - 2pEST — 26€8 =
- L (42,6(257) + 40pe;€8) + 492,65, ) — 4655 — 20€S) - 2068, =0,

2e j
we see that 7;(€) = —7;(€). Thus, we have shown that the second family of the conserved

operators is equivalent to the first one. O

Remark 4.5. Note that we have not used the properties of spin-1/2 representation in
Sections and [§.2.9 (except for Remark[4.9). So, the expression ({.8) for the con-
served operators and the equivalence of the two families of the conserved operators is true

for arbitrary spin. In the following we will restrict to the case of spin-1/2 representation.

4.2.3 The case when one K-matrix is diagonal

It now turns out that six of the parameters appearing in are superfluous and can
be eliminated by appropriate basis transformations and redefinitions of variables. First
note that we can set § = 0 without loss of generality, since the dependence of on «
and [ is only through the sum o + 3. Next, as we have already mentioned in Section 4.1
the rational spin-1/2 Lax operator is invariant under local basis transformations,
ie.,

XoXiLay(u) X, X7 = Loy(u)

a

for any invertible X € End(V). Thus, we can almost always choose a basis in which one

of the K-matrices is diagonal. (The case when a K-matrix is not diagonalisable has been
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

discussed in [AMS14]). For our purposes, we assume that K~ (u) (4.1a)) is diagonal, so
that

K@):(é‘*%—”/? . )
E —u+n/2
K+(u) = <£+++U+77/2 w:(u+n/2)> .

¢*(u+n/2) £ —u—n/2

For the expansion (4.4]) this means that ¢» = ¢ = 0, § = g = 0 . Substituting these
(together with 5 = 0) into (4.8) we obtain

L
g, —&)(e; +& 2 o _ _
L=y &_')_<€Jk ) (25257 + 5755 + 57 57) +
k£ I

L

> ey (e + 06— O5iSE (& = 075 Sk = (o + 07575 ) +
+ (2085 —26) 87 + (— &y +7€) ST + (= e — Ael)S; =
L
]' zZ Qz - -
> ——— (257Si+57Sp +578]) +
ki 4k
L

=(g; —&(g; + &)

1

€+ €k

gj—& _ g+ E
057g: — =8 grg- 5.5+)+
" (Jk €j+531 €j_§Jk

2048]'—25 X fygj S+— )\Ej

z S—1.
+(5j—§)(€j+§) - S ] J]

Rewrite it as follows:

7= (g5 — &)(ej +§)

o
c
1 I g +8\ o ar

+Z(5 —€ _5’+55—§>SJS'“+

ktj NI k J k<j

1 1 e, —¢ _ 1 e;+€
_2 ;2__] +S‘——J SS+
s 55 2y 1€ T Bz g T

7



4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

Finally we may set £ = 0 without loss of generality, although this is more technical to

establish. Using the properties of the spin-1/2 representation, namely

I 1 I
+o— _ z -Q+ . _ Q% 22:_
STS 2+S,SS 5 S*, (S7) 1
and the identities
11 g-=& 25E+9)
€j — €k €j+€k€j+f (5?—5%)(@4—6)’
1 1 g +¢&  2(er— )

€j—¢€r E&jtepe;—§ (E?—gi)(%‘—f)’

we obtain

L 2
EjTj 4€j z Qz
= S%ZSE +
(e —&(g; + &) ;53_52 Ik
c
2e _
+Y 5 <€k+£sjs,;+5’f 5S;s,j>+ (4.9)
€ ek gj+¢& i—&
202 2 Ae? I 2487
+ = JQS;+ 5 S;r : SJ ; £2_‘
g5 —¢ it+€ - 4 5]'_5 2
Define
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

We see that, up to a constant term, it is the same expression as (4.9). Consider the

following local transformation on the /th space in the tensor product (2.5)):

Ul:diag< Ztg,l)

Under these transformations we have

USiU = 57,

U U = 2 Sst,

8, —
US U = gfl " gsl—.

Under the global transformation U = U U, - - - U, we define

(2)

=UrVu!
J
L
4¢3 2 _ g2
> sy ALY
2

’Yé‘j o+ _ AE; o
J J
T SERYE A

(875, +5750)+
6] z

+ —53 e S7+
Next simply rescale to obtain

2 2
© _ 5 —& @ _

c A2 —g?) £ 24/e7 =& /e — &2 e s .
=D SSk+Z (SF Sy + S7Sf) +2a87 +

E- — 5
k£ k£ ok

]
+ 7/ €3 —§QS;T — \y/e3 — €257

79
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Now we apply a change of variables ¢; > 5? + &2 to obtain

L 2 L
2
Z SRS Z Sk (SFSy + S7SE) + 2087 +
7 < e 7 e
+ ’yejS —Ag;S; = (4.10)
€;Tj 1
= I J + —.
(e =+ 8 ]emy 4
This affirms that we may set & = 0 without loss of generality.
We refer to the set of mutually commuting conserved operators {T; cj=1,...,L} as

the open, rational Richardson—Gaudin system in the spin-1/2 case. Note that the coeffi-
cients of the S7S} terms in (4.10]) are not antisymmetric with respect to the interchange
of indices j and k. This distinguishes this set of commuting operators from those obtained
by the Gaudin algebra approach [RDO10, RBN14, (CRBN15].

4.2.4 Hamiltonian

Let now construct the Hamiltonian from these conserved operators. Consider

L L
D&t = ZZ€2 SZSZ+ZZQE S (SrS + 578 —1—20426’25Z+
j I

J=1 k#j

J=1 k=j+1 N7 J
L L -1 -1
€; €k € E; _ _
+2§:§: (2] 2 Qk J2>(SJ‘+Sk+SjSIj)+
€4 —¢€ et —¢
j=1 k=j+1 J k J k

c
—1—20425 QSZ—i—”yZe LSt — )\Za_lS_
—QQZ»S_QSZ—QZ Z eilen ! (S7 Sy +8758) +

Jj=1 k=j+1

s “1a—
+725j S; _AZEJ‘ Sy
j=1 j=1
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

Setting A = —v, and making the change of variable z; = 5;1 we obtain
1 £
_ —2,_*
H= 2 Zgj Tj
j=1
c 1 L L 5 c
— 2 Qz + +
=255 =52 2w (SISe+ S 4503 H (ST Sy). (411)
j=1 J=1 k=j+1 J=1

4.2.5 Physical interpretation

In this section we discuss a physical interpretation of the Hamiltonian (4.11]) con-
structed above. It turns out that it is simply the p + ip pairing Hamiltonian with extra
terms of a specific form, which can be interpreted as interaction of the system with its

environment.

Let us first introduce the isolated pairing mode not interacting with the environment.
Let ¢y, clT{ denote the annihilation and creation operators for two-dimensional fermions of

mass m and momentum k = (k,, k,). Then the p + ip pairing Hamiltonian is

K2 G . .
0= 2 g 0~ g 2 (R ) = ek

where GG € R is a dimensionless coupling constant and the summation is taken over all
momentum states k. The annihilation and creation operators ¢y, CL satisfy the canonical

anticommutation relations

{Ck, Ck/} = {CTk, CL} = 0, {Ck, CL} = 5kk’I-

Now consider a more general Hamiltonian with extra terms
T oyt :
H = H,+ 5 Z ((kx +iky)cp e+ (ky — zk:y)c_kck> : (4.12)
k

where I' € R is a constant. We note that this Hamiltonian is Hermitian, and the extra
terms can be interpreted as creation and annihilation of pairs of fermions, resulting from
interaction with the environment. This interaction is not general but rather has a specific
momentum-dependent coupling similar to that occurring in Hy. It is important to dis-
tinguish this type of interaction with the environment from other examples, e.g. [BMT§]

in the context of a heat bath, which facilitate a notion of entanglement with the environ-
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4.2. CONSTRUCTION OF CONSERVED OPERATORS AND THE HAMILTONIAN

ment. In our model there is no entanglement between the system and the environment,

because the state space for the environment is not explicitly defined.

We now restrict to the Hilbert subspace that allows only paired particle states. By
imposing this restriction, we do not consider states on which the operators in the interac-
tion term in the Hamiltonian (i.e. the second term) has trivial action. On this subspace

the following equality is satisfied:

ZCLCkCikC_k = chk + cikc_k. (4.13)

Set zx = |k| and k, + ik, = |k|exp(i¢x). Introduce the following notation:

. ) ‘ . I
Sy = exp(ngk)cltcik, Sy = exp(—igx)c_kck, S = CLCikC_ka ~ 3

Remark 4.6. On this restricted subspace, one may verify the su(2) algebra commutation

relations
[Sk, Sic] = £S5, 8¢, S ] = 25k
We now use integers kK = 1,...,L to enumerate the unblocked pairs of momentum
states (k and —k). Working in units such that m = 1, using equation (4.13]) and ignoring
c
1
the constant term 3 Z 22, we obtain
k=1
c L L
Ho= 335 - 6303 ansis;
k=1 j=1 k#j
c
which exhibits u(1)-symmetry associated with the operator S* = Z Si. The full Hamil-
k=1
tonian (4.12)) can be therefore rewritten as
c
H=Hy+TY 2z (S5 +5;). (4.14)
k=1

We see that (4.11)) is equivalent to (4.14) by identifying « = G~ and v = 2I'G~!. Thus,
we have shown that the Hamiltonian (4.14)) is integrable by means of the BQISM.

The Hamiltonian (4.14)) no longer possesses u(1)-symmetry. Thus, the algebraic Bethe
Ansatz can no longer be applied, due to the absence of an obvious reference state. In the

following we apply the recently developed off-diagonal Bethe Ansatz [WYCS15| to derive
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the formulae for the eigenvalues of the conserved operators (4.10)), the corresponding BAE
and the energy spectrum (the eigenvalues of the Hamiltonian (4.14])).

4.3 Eigenvalues, Bethe Ansatz Equations and the en-

ergy spectrum

4.3.1 Eigenvalues

Let us rewrite the K-matrices (4.1)) in the following form (using the notation from
[HCYYIH):

K~(w) =& +(u—n/2) ( . fl) o (u—n/2) (0SS +257) =

:£7+<U—77/2) <¢—2+_¢O_x+z(¢2_¢)a_y+o_z>7

where & = (0%, 0Y,0%) are the Pauli matrices. Analogously for K*(u). Thus,

K (u) =€ + (u—1n/2)in-& with Jn = <‘Z’ +o YT —¢) 1> ,

2 2
K*(u) =&+ (u+n/2)hy - & with hy = (¢+‘21'¢+7 i(¢+2_¢+),1) .

To match the notation from [WYCSI5] we need to normalize the vectors h; and hy.

Compute the norms

| = \/(lﬁ Z¢)2 (- —4¢)2 =i T,
ol = T

Introduce the normalised vectors

jo_ M jo_
VT T T Tt T
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Now, the K-matrices can be written as
Tt /2R ).
VY= om +1

+ —
KT (u) = \/itot +1 (ﬁ + (u+n/2)h - &) :

Let {v; | k = 1,2,...,L} denote a set of parameters that will be utilised to determine

K (u) =+v ¢~ +1 (

the eigenvalues of the transfer matrix (4.2)). These are analogous to the parameters in

(2.13) and (2.46)), but in the off-diagonal case there is no obvious reference state. From
[HCYY15], the formula for the eigenvalues of (4.2)) is given by

= VYo~ + 1/ Utet + 1 a(u)—Qg(:)n) —i—d(u)—Q(u ) +c

where

_ 2u—7) & N (y & "
a(u) = e (u+ —¢¢+1+2)( + —¢+¢++1+2)X
L
(u—e —n/2)(u+te— 77/2)
8 H (u— 5;)(u+€l)

d(u):2u+n u— u— _ )«
1/1¢ +1 \/¢+¢++1 2

Xﬁ(u—a+nﬂXU+&+nﬂ)
H (u—e)(u+e)

=1

11 (ute—n/2)(u—e —n/2)(u+e +n/2)(u—-ei+n/2)
(u—¢e;)(u+e;)

)
=1

:2(5?-%3-1).

The constant ¢ can be computed as

c—9 hy - hy 1 _2<%(¢¢++¢¢+)+1 _1)
T\ + VYT + 1 T\ LT+ .

84



4.3. EIGENVALUES, BETHE ANSATZ EQUATIONS AND THE ENERGY SPECTRUM

Finally, we obtain

=V ¢+ 1y/tet +1 x

; c
(vt mutvtn) gt (0= v )t o= )
) [a(U)g (u —v;)(u+v;) zl_[l U_UZ)(u+Ui) ’
L N2 _ 2 — &) — 2
+ c(u? —n?/4) H ((u o) <u277_/g42)) ((z(ﬂ _ ’U-2)) . /4)] 7 1

where

2u-—n £ 7 £ n
alw) = 2 <u+\/7¢¢ 1 +‘> <“ Voot 1 +_)X
XH u—sz 1/2) (U+€z—77/2)’

(u—-¢e)(u+e)

d(u)—2u+n(u— & _Q) U—L_Q>x
T T Voo +1 2 NS
(u—e+n/2)(utea+n/2)

(u—e))(u+e)

’:1n

Remark 4.7. Keeping in mind the parameters defined in , as a consistency check

consider

A,y = (6 +1) (u - ﬁ) (u i ﬁ) .
HWH)( w¢+)( ¢¢+)+

2
u? — &2

22
74

u

L
+ (2o +2 -2+ 1) ]
i=1
=2 ((Yo + 1u® - €2).

Now consider t(u)|,—o:

K*(u)],_, = (§;u ;z;_uu> , K W),y = <—€¢Zu _;bi u) , La(u)y=o = 1I.

Thus,
B E+u  Yu —£+u  Yu B 2 .o
t(u)|n:0—tra<< b €_u> ( b _§_u>> =2 ((Wo+ u* — &) 1.
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That is, the constant terms in the eigenvalue and the transfer matrix coincide.

4.3.2 Quasi-classical limit of the eigenvalues

The eigenvalues in the quasi-classical limit (n — 0) are constructed as usual from
(4.15)):
lim (u — &;)A(u) = n*X\; + O(n?).

U—e;

We compute this limit assuming the same dependence (4.4)) as for the conserved operators:

ﬁ ut e —n/2)(u—a—n/2) _

lim (u — ¢;
U—E; j Piny u—sl)(u—i-al)
L
n (1 1 1 3
=2+ —+ + +O(%),
2 4 <2€j Z<€j—€k 5j+5k>> (77)
k#j
L
(u+e+n/2)(u—e+n/2)
li — -
ul—>r§] e H (u—e)(u+e)

=1

:Q+n— L+Z£: Lo + O(n*)
2 4\ 2 \e;j—¢er € +ek ’
k#j

7 _ 1+ 0¢
Vo +1—\/w¢+1(1+§¢¢+1)+0(n2),

_ nAY + o
\/1/)+¢++1— \/¢¢+1(1+§W> +O(772).

Consider the expansion of the first two terms in (4.15)) up to second order in 7:

Tim (u = £;)v/§76" + 1/ 67 + La(u) =
—2 (Bwe+1)—¢) -

772 2 2 1 . 1 1 3
+ T (EWo+1) - ) (gj+2(€j_€k+€j+€k)) +0()

k#j
lim (u =)/ ¢~ + 1/t ot + 1d(u) =
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l\DIS

(e3(pop+1) =€) +

+

&€ g 2
7(———5]@%1) Z(O+ e+ (1 +8)0) — (a+ B/ Do+ 1+

28j

< (A= + (v = 8)¢) — &(a — ﬁ)) +

MPNCTES
772 2 1 ) 1 £ 1 1 O ,
+Z(5j<¢¢+ )_5) gj—i_;(fj_fk—i_ﬁj%—&k) +O(n?).
Also ; .
(u—v; +1n)(u+v;+n) 1 1
E (u — i) (u + i) _1+n;<U—vi+u+vi)+O(n2>’
‘ c
( 77)(“"’% 1 1
H ( Uz)(u—l—vz) nzl <U—Uz‘ - U+Ui) +00r).

Combining these calculations then leads to

ﬁ u—v+n)(utv+n)

lim (u —&;)v/%=¢~ + 1/ ¢ ¢+ + La(u (v —v;)(u+v;)

u—E; P
=2 (SWe+1) &) +
L L
+%2 — (2o +1) - Z % 55 (EWer1) -6 - 2€Jk
i=1 vi k#j
£ 3¢2 5?
= fWo+ 1) = 2 = A+ v+ (v +0)0) — (a+ Ble;/vo+ 1+
2 _ 3
+W((A—M)¢+(7—5)¢)+§(a B)| + O,
: - )(u+ v —n)
Jim (u eNVUTo + 1ot + 1d(u) 11 o u+v2) -
=g(3<w¢+1> &) +
7 £ 2 £ 2,
t5 —(fWo+1) — Z 2t ej(Wo+1) - ﬁ)Zm—
i=1 Yi k#j I k
2 2
<w¢+1>—ii%(uw)w(wa)qs)—<a+ﬂ>sj¢¢¢+1+

]

§e; \
QW(( — WY+ (y = 8)9) — &la—B)| +O(°).
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Finally, the sum of the first two terms in (4.15)) can be expressed as

Tim (u — &)/ ¢~ + 1y/YF ot +1 %

c u—Uz—i‘?? (u+v; + 1) £ (u—v; —n)(u+v; —n)
' g 'LL — Y (U + 'Uz') * d(U) 211 (u — U1)<U, + Uz) =
- B 1 1
2| (2 2
o (Ej(qu—i_l) €>;(€j—vi+£j+vi)+
L 1 . 1 1 6
2 2 j
+§(8J<¢¢+1)_§);<5]_6k+€j+€k>_Z(wgb—i_l)_
_3_52—( +5)€'\/¢¢+1+L(( — WY+ (y=8))| =
e ’ Vo= AR
£ c
=1 J ? o b
. 2
+%(¢¢+1)—%— ](w¢+1) (a+5) Vo + 1+
J
. (A= +(y=0)9)| =
2V +1
(Bo+1)—8?) (K 022 3
= 2[ £ k%;s?_gi ;Eg ]vi2+4 gi(vp+1) —

The third term of (4.15)), reproduced here for convenience,

u—>J

lim (u — ¢ [\/w ¢~ + 1/Ytot + Le(u? — n?/4)x

(=) =7

y ﬁ ((ut )’ —?/4) (u—e:) 772/4)]

is computed as follows. First, expand the product in powers of 7:

[ (el =/ (= = otja)

(@ =) =7

ﬁ ute)(u—e)’ — (/4 ((u+e)’ + (u—e)?) + O’)
(u+ei)(u+e)(u? —v7)

i=1

=1

88



4.3. EIGENVALUES, BETHE ANSATZ EQUATIONS AND THE ENERGY SPECTRUM

U — &g U+ ek

Thus,
c
(ute) —n*/4)((u—e:)® —n?/4)
ulgrel] (u=e5) E (u? —e2)(u? — v?) B
2 £ 2 2
n g & 2 3
-_T 0
2 g o)

£ 9 2 2 £ 2 2
us — & n u° — & 1 u+er  U— €y 3
B R —vi( i >+o<n>.
1 i 3

This term already gives the multiple of 7%, so we just need to consider the constant

contribution from the other multiples. Consider

VETeT + 1Yot +le|
-
— (W ot +o v +2-2/00" +1\/¢+¢++1>]
=206 +2-2(p+1) =0.

Thus, there will be no contribution in the eigenvalues from the third term in (4.15)).

Finally, we obtain the eigenvalues of the conserved operators (4.8]) as

\ = <<w¢+1 ( n 252 - ) e+ 1) —

=1 J
53
2v/Yo +1

—(a+ B)ejv/ o+ 1+ (A=) + (v =)o)

Remark 4.8. In the case when K~ (u) is diagonal, by setting B =1 =¢ =0 =

obtain
2o (L2 L g (o + 1)e2
A= Z Zgz Tl e )
J k#£j =1 J ’ J
€j>\j _ i 2 i 52 § B (Oé + 1)8?
2 _ 2 2 _ 2 ¢
£ & oy 5 — 5 v? 4 £ 19

As for the conserved operators, we can set & =0 by a suitable variable change

EiN;

2 _ 2
5j£

1
2—1—04.

L 2 L 2
&j . 251‘

E : _ 2 2
E=0  k#j J k i1 59 T

89

(4.16)

=0 we
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Thus, the eigenvalues of T} can be found as

L 2 L 252

1 2 F

4 ‘et —ep 4
£=0 ki I i=1

j 2 _ (2
sjf

4.3.3 Bethe Ansatz Equations

The eigenvalue expression for A(u) given in (4.15)) is undefined for u = vy, for each
k=1,2,...,L. Assuming that the vy are all distinct, analyticity of A(u) requires that
lim A(u) must be finite for each k = 1,2, ..., £. This requirement equates to evaluating
U—V

the residue of A(u) at u = v, and the resulting constraints on the vy are referred to as

the BAE, as in the diagonal case. The BAE are equivalent to

lim (u — vg)A(u) = 0. (4.18)

U—V

Compute (4.18) from (4.15):

f[ (vg — v; + ) (v + v; + 1)

(0x — vi)(vr, + v;)

Vo 1/ 1 fafoy) L2 +

21)k itk

—n(2u =) 1y (W — v — 1) (v + v — 1)
25, g (vp — v) (Vg + v5)
((or + ex)? = 0 /4) ((vk — €)* = 1*/4)

2 2

(
X ﬁ (g + 51‘)2 - 772/4)((% — Ei)2 — 772/4)] = 0.

+ d(Uk) +

+c(vp —n"/4) x

1 (02— D)0} — 2)

Substituting the expressions for a(u), d(u) and ¢:

20k =1 (vk\/m+§_+g ¢—¢—+1> (vk\/m+§++g ¢+¢++1) X

QUk
c c
(v — &1 = 1/2)(vk + & — n/2) v + 1) 77 (WK — vi + 1) (6 + v; + 1)
8 H (v — 1) (vk, + €1) 20y, g (v — Vi) (v + v;) *

+2U;+n<ka—g_ﬂ ¢—¢—+1> X
Uk 2
x (/9T + 16" = LVTeT 1) x
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" ﬁ (v — &0 +1/2) (v + &1 +1/2) =20 — n) ﬁ (v — vi —n) (v + v — n) N

(vp — &) (Vg + &) 2uy, (vr — i) (v + v3)

=1 itk

+ (W0 + 07 + 2= 2/070 + 1VBTOT 1) (o —n?/4) X
o A 20" = (0 = 20)? = 4) 17 (o 20° = /) (0= 2 = /4

(F— 2o, 1l W~ )0E )

=0

and cancelling common factors, we obtain

Qiz}k(vk\/m—f-f_‘f‘g\/m) (Uk\/m+€++g\/m> %
x ﬁ e _n/2)<”k+51)— n/2) ﬁ (ks —vi+m)(ve +vi+n)

(vp — &) (v + & s (vg — v;) (v + vy)
- (T W) (/o +T— 6"~ L yirgr 1) x

" ‘ vk—€z+77/2(vk+€z+n/2) (vx — v — ) (v +v; — )
H v — &) (v + €1) H (vr — i) (Vg + vi)

=1

/N

1= itk

AN,
/N

1
1 (ot +ouh) 422000 + 1VUTeT 1) x
H+ —1/2) <vk+a+n/2><k—ez—n/2><vk—ez+n/2>ﬁ 1

(vp — &) (vr + 1) v — v7)

X

=1 itk (

And finally,

2—"(vk\/w—¢—+1+§‘+ o+ )(vk\/¢+¢++1+€++g\/w+¢++1) x

1
H Uk_51+77/2>(vk+51+77/2) H(

—%(vkm 3 W) (0eVoF6F +1—¢" = 1/5767 +1) x

k

—Ui+77)(vk+vi+77)_

L
1
XH (ve —er—=n/2)(vk +e1—n/2) 5 H(”k_“i_”)(kafvi—n)Jr
(W vov) r2- 2o +1\/¢+¢++1) = 0. (4.19)

Remark 4.9. One can also compute the BAE from

lim (u+ vg)A(u) = 0.

US——VE,
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One can check that this gives the same expression .

4.3.4 Quasi-classical limit of the Bethe Ansatz Equations

Let us expand the BAE (4.19)) in the powers of . Start with

£ 1 | n 1 1
H(vk—sl+n/2)(vk+5l—l—n/2) Hvz—sf ( 221:<vk—51 Uk + &

=1 =1

L L

L _ 1 < 1 1 )
L (ve — e —n/2) (v + 21— 1/2) _Uvi—af <1+§;(Uk—€z +Uk+€l)> +O(),

c c c
1 1
[T(ok = v+ m) (o + 0+ m) = T [ (0} = 07) 1+n2( + ) +O(P),
itk itk izn \Uk T Ui Uk T
- = £ | |
Lo = vi = m)on v = m) = ] [(wi = o) <1_UZ(U —v W +v>)+0(n2)
itk itk itk Nk T ki
Thus,
L 1 L
Vg — 0 +N)(Vk +0; +1) =
H (vp — &1 +n/2) (v + 1+ 1/2) 1171( F ) (v )
= 1 = £ 2v £ v
k k
=HU2_€2H<vz—vz>(un(zvz_vz— —U2_€2)>+0(n2),
=1 k Uitk itk K i =1 k !
L 1 L
v — v —n) (v + v — 1) =
e —==muram 1l )

L L

c ] 20, Lo
:Hvz_gz H(Ui—vf) (1_77(21),3—11-2 _Zv——ef)> +(9(772).

Uitk i£k

One can check that the first order contribution (i.e. first order in powers of 7) from the
third term in the sum on the left hand side of (4.19)) is zero:

(6 6% + 070" +2 - 2/5 6 T 1157 g7 +1) =
= (0 +10)(d+1\) + (6 + 1) (W +17)) +2 —

B npY +6¢ nAY + ¢ 2y _
2(¢¢+1)<1+2 w¢+1)(1+2—w+1>+0(n)—

= (200 + (M +69) + n(p +79)) +2 = 2(¥ + 1) —
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A+ +(0+7)9

Vo1 +0(n?) = 0.

— 2y +1)7

The first order contribution from the other two terms in (4.19)) also gives zero:

L

2 (wen/bo ¢ —f)(vk\/¢¢+1+s)ﬁ02 [Tk - of) -

1=1 k Uitk

—i—z<vk\/¢¢+1+g> (vk\/¢¢+ —g)ﬁvz H P — i) =0.

— g2
1=1 k Uik

Thus we have to expand the BAE up to second order. Start with

— I +0¢) +°ud — 1n?(u +0¢)° 3
V¢ +1—W¢+1(1+2 Go11 3 ot 1) >+0(n>,
B LA +90) + P\ 1P\ +7¢)
\/¢+¢+—|—1 \/¢¢+1(1+2 Do+ 1 3 (W6 +1)? >—|—(9(773).

Using this, we now calculate the n? contribution from the third term of (4.19):

L () + 60) (A + 7o) L1 w 1 (g +09)*
4 (Yo +1)2 209 +1 8 (Yo + 1)

Ll 1w nd)
200 +1 8 (Yo + 1)2

(A=Yt (y = 6)9)’
= 1o+ 1) — (v =)A= n).

Consider the first and the second terms in (4.19)):

%’Z(vk\/W(HWWM) E+nf+ 2 ¢¢+)

ON+ py = 2(vo + 1) +

2 Yo+ 1
A
x(vkm(1+g$¢17l¢)+£+na+ ¢¢+)
L4 £ Lo 9, L
><H2—€H(v,%—vi2) (1—}-77(2 k _ZU _5>)_
=1 Uk T G i#k vi kool
—2—n<vk\/¢¢T( 727/W+5¢)+€_ 5——\/¢¢T)

Uk Yo+ 1
x(vkm(l+§$¢1ﬁ¢) Ua—i\/m)x
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c 1 L o9y, Lo,
Mgl (0L Sats))

=1 kTl zp i#k

The first term gives the 7% contribution

217 L Tt oy (o7 o) (e VBT
—Hfg(_)k w-e) (G ot )+
) V 1
+ (Vo +1+¢) (%“wr;+¢1+ﬁ+ WQJF )+
£ c
+ (Ui(lpgb—,— 1) _62) (Z 2 Ek'UQ o ZQ}QU——kEZ> ]’
i#k kT =1 Tk T
and the second term gives the n? contribution
2171 T — o M6 IGTT
v—kgmg(vk—%)[<vk\/¢¢+l+§>(5 o1 YT 9 )+
) v 1
+ (/oo +1-¢€) (”;Q‘Z;T(Zﬁ g YT )—
Lo c
o0 -6) (L5 |
#k =1 k"l

Summing up all terms we obtain

JIPE

2o+ BAVEsTT+2wo+1)— LAZHV 0 =09)

I i+
L ) £ 1
2 2
+2(vk(w¢+1)—€)(;vg_vg_;:ﬁ> i

(A= + (v = 8)9)°
4o+ 1)

—(v=0)(A—n) =0
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Thus, we obtain the following BAE in the quasi-classical limit:

E((N =)+ (y—0)p) n

L L
+ (Ul%(wqb + 1) - §2) (Z Ug 3 v2 - ﬁ) — (420)
itk K iog=1 K !
I N (e G L A § O )
K (” DA T e+ D ) [0t =)

Remark 4.10. By setting 6 =9 =¢p=0=p=& =0 1in we deduce the Bethe
roots {vg : k =1,...,L} appearing in satisfy the BAE

c c c
a+1 N 2 L AT (v — ) (4.21)
V2 sz—vz 202_52_41)2 Lo (2 2y’ '
k itk kK i =1 k l k Hi;ﬁk(vk — ;)

4.3.5 Eigenvalues of the Hamiltonian

Recall A}, given in (4.17)), is the eigenvalue of the conserved operator 77 given in (4.10)).
To compute the eigenvalue of the Hamiltonian (4.11]) consider

L L L L L
DEN= D st g
J 5 J

j=1 jkk;éj J i=1 j=1 v j=1

From the BAE (4.21]) we find

j=1 "t J 4 k# 7 ki
Thus
£ c L L c £ ;92 9
2 4 7>\ 1 H —l(vz — € )
P L CE D DUEED ) sy L i) _
2 _ 2 i 2 _ 2 2 7L
=1 TS i=1 i=1 ki Y 2T 0 (07 — 07)
£ L 2 2
A 111,y —«
:2(a+1)z 2—2_’%2_21_[2_1(2 ;)
i=1 -1 Vi Hk;éi(“z —vj)
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This leads to

c c c L (2 2 c
2y * —2 /7)‘ 1 H]fl(vz 5]) 2
Ee)\:(a—i—l)g __E_ —0458
i N i 2 7L J
j=1 i=1 2 v Hk#i(vf - v}) =1
Implementing the change of variables z; = 8;1, y; = v; * and setting A = —v we obtain

the expression

(4.22)

L L L L —2

1 I o (U —wiz )

E=1+G)Y yi—5) s+ = L
i=1 2 k=1 G i=1 Hk;éi(l — YilYy, 1)

for the eigenvalues of the Hamiltonian (4.14)) subject to the BAE obtained from (4.21)):

L L L -2
2 2 I? 1-
e i iz (U =y ) (4.23)

Zn Vi T Yk I Yk 2 G2y, Hf;ék(l — yky; )

4.4 Summary

In this chapter we have studied the open, rational Richardson—Gaudin model with
off-diagonal boundary, i.e., obtained in the quasi-classical limit from the BQISM with
rational off-diagonal reflection matrices. Assuming one of the K-matrices being diagonal
(which can almost always be achieved by a basis transformation), we have arrived at the
expression for the conserved operators. Next, we have constructed the Hamiltonian
(4.14)) (which is equivalent to in the spin operator formalism) as a linear combination
of these operators. Thus, we have shown that the Hamiltonian , describing a p +
1p pairing model interacting with its environment, is an integrable model. Finally, by
applying the off-diagonal Bethe Ansatz, we found that the energies of are given by
subject to the BAE (4.23), and the eigenvalues of the conserved operators

are given by (4.17)).
The new integrable Hamiltonian (4.14]) was recently applied by Claeys et al [CBN16] to

model a two-dimensional p, + ip, superfluid interacting with an environment. The exact
Richardson—Gaudin wave function was presented and the BAE (4.23)) were re-derived
using an alternative algebraic Bethe Ansatz [TF14]. Derivation of the exact eigenvalues
of the conserved operators , exact solution of the BAE and calculation of the exact
correlation functions were also discussed. These exact results were compared with the

mean field theory approach.
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CHAPTER 5

Trigonometric Richardson—Gaudin models

with off-diagonal reflection matrices

In this chapter we consider the most challenging case of Richardson-Gaudin models
from the BQISM so far, based on the trigonometric off-diagonal reflection matrices. The
following K-matrices [CYSW13(] satisfy the reflection equations (2.32)) together with the

trigonometric R-matrix ([2.2)):

Ky (u)  Kyy(u)
where 3
K (u) = 2 (sinh o cosh 5_ coshu + cosh a_ sinh 5_ sinh ),
{5 (1) = 2 (sinh a_ cosh B_ cosh u — cosh ar_ sinh 3_ sinh u)
Ko(u) = e~ sinh(2u), Ky (u) = e~ sinh(2u),
andl]

S
K™ (u)=— K (-u-— 77)|(a_,,6’_,0_)»—)(701+,7,3+,9+) :

We make the usual change of variable u — u —1/2, so that the K-matrices are now given

by
K () = K~(u—n/2) = (ié; ié;) , (510
KT (u) = K+(u—1/2) = <K1+1§Z; ?fEZ;) , (5.1b)

!Note that our KT (u) differs by the minus sign from the one in [CYSW13c]. We choose this convention
in order to make the K-matrices consistent with those from previous chapters.
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where

Ki;(u) = 2(sinha_ cosh _ cosh(u — 7/2) + cosh a_ sinh f_ sinh(u — 1/2)),
Ksy(u) = 2(sinh a_ cosh 3_ cosh(u — 77/2) — cosha_sinh 4_ sinh(u — 1/2)),
K5(u) = e’ sinh(2u — n), Ky (u) = e % sinh(2u —n),

and

K, (u) = 2(sinh a cosh By cosh(u + 1/2) — cosh oy sinh 8 sinh(u + 1/2)),
K (u) = 2(sinh ay cosh By cosh(u + 1/2) + cosh oy sinh B sinh(u + 1/2)),
Kih(u) = e sinh(2u +n), K (u) = e % sinh(2u + 7).

Consider the transfer matrix of the form ([2.44))
t(u) = tl‘a (K;_(U)Laﬁ(u — &Tﬁ) s Lal(u — 81)K€L_<U>La1(u + 81) s Laﬁ(u + 85)) (52)

with the K-matrices given by (5.1)) and the trigonometric Lax operator (2.17)). The quasi-
classical limit of this transfer matrix leads to the open, trigonometric Richardson—-Gaudin

model with off-diagonal boundary.

The plan for this chapter is the following. First of all, in Sectlons [b.1] and [5.2] we
describe the diagonal and rational limits of the K-matrices , leading to the con-
structions from Chapters 3] and [ respectively. In Section we discuss how to take the
quasi-classical limit in this case and in Section[5.4] we derive the conserved operators as the
quasi-classical limit of the transfer matrix (5.2). Next, we consider the second family of
the conserved operators and prove that it is equivalent to the first one (see Proposition
below). Our construction and, in particular, the expression for the conserved operators
depends on several free parameters. In Section we consider a special case obtained
by setting some of the parameters to zero. This simplifies the conserved operators to the
expression (5.8)) which is easier to analyse. We show that this expression is different from
all conserved operators we have seen in previous chapters. In fact, we notice a certain
similarity with the elliptic Gaudin model [ED15]. We close the chapter with a discussion

of future research possibilities.
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5.1. DIAGONAL LIMIT

5.1 Diagonal limit

The diagonal K-matrices (2.42)) can be obtained as follows from ([5.1)). Rescale (|5.1al)
by e #- and send 3_ — oco. Then, using

——00 ——0

e~ P-sinh _ oo, 1/2, P~ cosh - LEmiN 1/2,

we obtain

e P~ K~ (u) — diag (sinh a_ cosh(u — /2) + cosh a_ sinh(u — 1/2),
sinh a_ cosh(u — 1/2) — cosh a_ sinh(u — 1/2))
= diag (sinh(a_ 4+ u — n/2),sinh(a_ — u +n/2)),

which is equal to the diagonal K ~-matrix ([2.42al) with £~ = a_.
Analogously, rescale ([5.1b]) by e’+ and send 3, — —oo. Using

B4 —r—o00 B4 ——00

e+ sinh —1/2, € cosh f, 1/2,

we obtain

e’ K (u) — diag (sinh oy cosh(u + 1/2) + cosh ay sinh(u + 1/2),
sinh acy cosh(u + 17/2) — cosh oy sinh(u + 1/2))

= diag (sinh(ay +u +7/2),sinh(ay —u —n/2)),

which is equal to the diagonal Kt-matrix (2.42b|) with £ = o .

5.2 Rational limit

Now let us explain how to obtain the rational off-diagonal K-matrices (4.1)) from (5.1]).

First of all, let us introduce an additional parameter v as follows:
a_ = va_, ay v vog, u+n/2 = v(u+n/2).

Divide the K-matrices (5.1]) by v and use

inh
i ST (vz) .
v—0 1
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5.2. RATIONAL LIMIT

to obtain
Kii(u) = 2(a cosh f_ + sinh f_(u — n/2)) = 2sinh f_(a_ coth f_ + u — 1/2),
Ksy(u) = 2(a cosh f_ — sinh _(u — 1/2)) = 2sinh S_(a_ coth f_ — u +1/2),
Kip(u) = 2¢" (u—1/2), Ky (u) = 27" (u~1n/2).

Thus, in this limit (5.1a]) will reduce to (4.1a]) up to a scalar multiple:

6
_cothB_+u—mn/2 < — —n/2
K_(u) — 2sinh 6_ <Oé 66070_5 u T]/ sinh B_ (U n/ ) ) _
sinh B_ (uw—n/2) a_cothB_ —u+mn/2

_ogunp (& e vTu=n/2) (5-3)
¢~ (u—n/2) & —u+n/2
with
) ) - ) o—0-
£ =a_cothfB_, ¢ smhﬁ , 0 smhﬁ_'

And, analogously,

Kii(u) = 2(oy cosh B4 — sinh B4 (u 4 n/2)) = —2sinh 4 (—a coth B4 + u +1/2),
K3 (u) = 2(ovy cosh By + sinh By (u + n/2)) = —2sinh B4 (—ay coth B — u — 1/2),
Kfy(u) = 2¢" (u+1n/2), Ki(u) = 2¢7"" (u+1n/2).

Thus, ((5.1b]) will reduce to (4.1b)) up to a scalar multiple:

- thfB, +u-+n/2 +n/2
K*(u) = —2sinh g, |+ OOt —aim (u+0/2)
s (w+n/2)  —agcoth By —u —1n/2
+ 2 + 2
— osmng, (& T2 vt wdn/2) 5.4
¢ (u+n/2) & —u—n/2
with
*_ oy cothfy, Yt = —— gt
¢t = —ay coth By, P = R ¢t = .

Remark 5.1. For completeness of the picture let us also check the diagonal limit.

o Multiply by e P~ and consider B_ — co. Then

K~(u) =2 (éa +u=n/2) 0 ) _
0 b~ /2
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5.8. QUASI-CLASSICAL LIMIT

f(a-+u—n/2 0
0 a_—u+n/2)

o Multiply by e®+ and consider B, — —oo. Then

K+(u)%—2 (‘%04+—%(U+77/2) 0 > _
0 —say + 5(u+1/2)

(o tutn/2 0
0 oy —u—mn/2)

These agree (up to a rescaling) with the rational limit (2.57) of (2.42), where we identify

E=a_, T =ay.

5.3 Quasi-classical limit

Like in the rational case (Section we require that the K-matrices (5.1)) satisfy the

condition (4.3):
lm{K*(u)K ™ (u)} o< I.

n—0

Let us assume the following dependence of parameters on 7:

ap =&§+na, Br=C+ny, 0 =0+nt,
a-=-=E+nb, B-=—-C+nd, 0_=0+ns,

(5.5)

where &, (, «, 8, 7, d, 0, t, s are free complex parameters (there are no constraints

between them).

Now consider

Ki(u) Kh(w)) \Kn(u) Ka(u)
_ (Ka () K7y () + Kb () K (w) K (w)Kp(u) + Kﬁ(u)@(u))
K () Ky () + Ky () Ko () K (w) Ky () + Koy (1) Ko (w)

Setting n = 0 we obtain

K (w) Ky (u) + K (u) K ()] =
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5.4. THE FIRST FAMILY OF CONSERVED OPERATORS

= 2¢7?sinh(2u) (— sinh € cosh ¢ cosh u — cosh € sinh ¢ sinh ) +
+ 2¢7’ sinh(2u) (sinh € cosh ¢ cosh u + cosh € sinh ¢ sinh u) = 0,
K () Ky (u) + K (u) K ()|, =
= 2¢’ sinh(2u) (sinh & cosh ¢ cosh u — cosh € sinh ¢ sinh u) +
4 2¢” sinh(2u) (— sinh € cosh ¢ cosh u + cosh € sinh ¢ sinhu) = 0,
K () Ky (u) + K (u) Ko (w) |, =
= sinh®(2u) — 4((sinh € cosh ¢ coshu)® — (cosh € sinh ¢ sinh u)?),
K3 () Ky (u) + K35 (u) K ()|, =
= sinh*(2u) — 4((sinh € cosh ¢ coshu)? — (cosh € sinh ¢ sinh u)?).

Thus, the condition (4.3]) holds under assumption (5.5)).

Remark 5.2. To retrieve the diagonal construction from here we send ( — —oo and set
v =0 =0. This leads to f— — o0 and By — —oo. Thus, by Section[5.1], we have

S K™ (u) 7% (0.42d)  with § =—-§+n8,
S Kt (u) T (2.428) with & =&+ na.

This agrees with the quasi-classical expansion i the diagonal case.

5.4 The first family of conserved operators

The conserved operators 7; are constructed as before (3.14]) from the transfer matrix

(5.2) above:
lim (u — &;)t(u) = n*1; + O(n?).

U—E

Expanding the K-matrices in 1 as 7 — 0 taking into account ([5.5)) we obtain

K*(u) = K{ (u) + nK3 (u) + O(n*), K~ (u) = Ky (u) + 0Ky (u) + O("),  (5.6)

where
Ky (u) =
(2 (sinh § cosh ¢ cosh u — cosh € sinh ¢ sinh ) e? sinh(2u)
e~%sinh(2u) 2 (sinh & cosh ¢ cosh u 4 cosh € sinh ¢ sinh «)
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5.4. THE FIRST FAMILY OF CONSERVED OPERATORS

K3 (u)

2sinh £ sinh {(y coshu — avsinh u)+
+2 cosh £ cosh ((avcosh u — 7 sinh u)+
+(sinh £ cosh ¢ sinh u — cosh € sinh ¢ cosh u)

~0(—tsinh(2u) + cosh(2u))

and
Ky (u) =

[ —2(sinh § cosh ( cosh u + cosh € sinh ¢ sinh )
B e~% sinh(2u)
Ky (u) =

2sinh ¢ sinh (6 coshu + B sinh u)+
+2 cosh € cosh (B cosh u + & sinh u)+
+(sinh £ cosh ¢ sinh u + cosh € sinh ¢ cosh u)

9(ssinh(2u) + cosh(2u))

—e

Substituting (5.6) and (2.24)) into (5.2) we obtain the following (the same as in Section

3-2] but with different K-matrices):

lim (u — ¢;)t(u)

e?(tsinh(2u) + cosh(2u))

2sinh € sinh ((y cosh u + asinh u)+
+2 cosh € cosh ((acosh u + v sinh u)+

+(sinh & cosh ¢ sinh u + cosh € sinh ¢ cosh )

e? sinh(2u)

—2 (sinh £ cosh ¢ cosh u — cosh £ sinh  sinh u)

e?(ssinh(2u) — cosh(2u))

2sinh ¢ sinh ((d coshu — B sinh u)+
+2 cosh € cosh { (8 coshu — ¢ sinh u)+

+(sinh € cosh ¢ sinh v — cosh € sinh ¢ cosh u)

u—re;
o Ca;(0) K1, (55)
—ntr, | KT (), . Ko (e5) an(ej — &) 1a\&j
Nl la(gj) GJ(O 1a 6] +77 ;_1 smh(s _519) +
[ —— _
K70 (85)a (0)lar (g5 — ) K, (¢5) T -
+1 2 sinh(z; — ep) + 11850 (65)0aj (0) Ko (g5) +
c _
K (e)la;(0) K1, (ei)lar(g; + € _
i3 Bl MO S 20 | pes (0,00 () | + O

sinh(e; + €)

=
Il

1

Again, one can check that

10 (K, (25)0aj (0) K1, (25))

tra (K15 (e5)lar () — er)lej (0) K1, (e5)) = tra
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5.4. THE FIRST FAMILY OF CONSERVED OPERATORS

which gives

£ tro (K1 () lar (e — €x)la; (0) K1, (g
I (&)~ ) (0K (5))

sinh(e; — &) *

Py
zﬁ: tra (K5 (55)0ai(0) K1, (g5) lar (€ + €4)) N
k=1

tr, ’

* sinh(e; + )

+ trg (Ko (£5)0aj(0) K, (g5)) + tra (K, (g5)0a; (0) K3 (<5)) -

In the following we will work with the three parts of the above expression separately and

it is convenient to introduce the shorthand notation

Ty = trg (K7 (e5)ak(ej — 1) aj(0) K1, (7))
Ty = try (K1 (e5)0aj(0) K1y (25) bar (e + €1))
T = trg (K3, (6:)00j(0) K1, (g5)) + tra (K1 (g5)0ai (0) Ky (g5))

and, hence,
c c
T1 T2
;= _ - +1T5. 5.7
'3 kzﬁ sinh(e; — ex) * ; sinh(e; + €) L (5.7)

Using Maple and simplifying we can calculate the traces T}, T5 and 73 explicitly:

Ty = 4 (sinh®e; + cosh® () (cosh?e; — cosh®€) (S Sy + 57 Sy 4 2cosh(e; — k)53 SF),
Ty = —4 (sinh € cosh ¢ cosh e; + cosh € sinh ( sinh ;) S5S, —
— 4 (sinh § cosh ¢ cosh e — cosh € sinh ( sinh 5j)2 S; 8¢ —
— 8 cosh(g; + &) (sinh® € cosh® ¢ cosh? £; — cosh® { sinh® ( sinh® &) SZSy —
— 2cosh(ej +¢) sinh2(26j)SjS,§ -
— 4sinh(2¢;) (sinh € cosh ¢ cosh e + cosh € sinh ( sinh g;) X
X (e_QSjSk_ + cosh(e; + ek)eeS;“S,j) +
+ 4 sinh(2¢;) (sinh € cosh ¢ coshe; — cosh € sinh ( sinhe;) x
X (eeS;S,j + cosh(e; + Ek)e’eSj’S,j) + sinh?(2e;) (6295}*5;r + e*ZHS;S,;) )
Ty = —4 cosh(2¢;) (sinh ¢ cosh ¢ cosh g + cosh € sinh ¢ sinh ;) €S +

J
+ 2sinh(2¢;) (sinh € cosh ¢ sinh e; + cosh € sinh ¢ cosh ¢;) 665;r —
— 2(t — s) sinh(2e;) (sinh € cosh ¢ coshe; + cosh ¢ sinh ¢ sinhe;) e’ ST +
+ 25sinh(2¢;) sinh € sinh ¢ ((y + 6) coshe; + (o + B) sinhe;) 6‘93;r +

+ 25sinh(2¢;) cosh & cosh ¢ ((a + 8) coshe; + (7 + 0) sinhe;) eOS}L -
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5.5. THE SECOND FAMILY OF CONSERVED OPERATORS

— 4 cosh(2e;) (sinh € cosh ¢ coshe; — cosh € sinh ( sinhe;) 6_65]-_ +

+ 25sinh(2¢;) (sinh € cosh ¢ sinh e; — cosh € sinh ¢ coshe;) e‘QSj‘ +

+ 2(t — s) sinh(2¢;) (sinh & cosh ¢ cosh e; — cosh € sinh ( sinhe;) e_OSj_ +
+ 2sinh(2¢;) sinh { sinh ¢ ((y + J) coshe; — (o + ) sinh g;) e’HSj’ +

+ 2sinh(2e;) cosh & cosh ¢ ((a + B) coshe; — (v + &) sinhe;) e S, +

+ 2sinh(2€) sinh(2¢) S} + 2(y + 0) sinh(2¢) sinh(2¢;) S} —

— 2(ov + B8) sinh(2¢) sinh(2¢;)S; — 2(t — s) sinh?(2¢;)S7.

Remark 5.3. Let us check that the diagonal limit agrees with the expressions from Section

13.2.1. Multiplying each expression above by e* and considering ( — —oo we obtain

Ty — (cosh’®e; — cosh?€) (575, + 55 S +2cosh(e; —er)S:S;) =
= sinh(e; + &) sinh(e; — €) (S S, + S; S + 2cosh(e; — )57 55),
Ty — — (sinh & coshe; — cosh € sinhe;)? S8, — (sinh € coshe; + cosh € sinh g;) S; S+
+ 2 cosh(g; + &) (cosh®g; — cosh? €) S:Sp =
= 2cosh(g; + &) sinh(e; — §) sinh(g; + £)S7Sf —
—sinh®(e; — £)SFS, —sinh®(g; + €)S;S),
Ty — ((a + B)sinh(2e;) — sinh(2€))S7.

This agrees, up to a scalar multiple, with .

5.5 The second family of conserved operators

Let us now consider the second family {7;} of the conserved operators obtained, as
before, by (3.17) from the transfer matrix (5.2)):

lim (u+g)t(u) = n°F + O(n°).

U——Ej

Proposition 5.4. We can show that 7, = —7;, thus, the second family is equivalent to
the first one.
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5.5. THE SECOND FAMILY OF CONSERVED OPERATORS

Proof. Again, let us introduce € into the notation, rewriting as

L

(&) = Z N - )
k

sinh(e; — e;) — sinh(e; + €)

Using the same argument as in Sections [3.2.2] and 4.2.2] it is easy to see that in this case

<o T _ T
73(8) = 7;(=¢€) }9+H—9+,9_H—9_ = 75(=¢) ‘9»—)—9,ti—>—t7s»—>—s'

Now consider the terms in ([5.7]) one by one. Start with the first term. It is straightforward
to check that

( g)T Tlg) - Z j :_Z‘ Tl(@

smh —ej +¢€p) oy sinh(e; —e,)’

For the second term let us consider separately the cases when k£ # j and when k£ = j. It

is easy to check that

i To(=8)" ]y, _i 1G]

sinh(—¢; —ep) sinh(e; + &)

K Py

Now consider T5(£) with k = j. Using the properties of the spin-1/2 representation

I I I
STS =548, S8 =5 =9 (9 =3, (ST =(57)* =0,
1 1 1 1
zQ+ _ —Qt+ +Qz _ _ Qg+t 20— — __Q— —Qz _ —Q—
SS—QS,SS 25,55 2S,SS 25,
we obtain
Tk =j) =

=—4 (sinh2 ¢ cosh? ¢ cosh? g+ cosh? € sinh? ¢ sinh? ej) I —
— 2sinh(2¢) sinh(2¢) sinh(2¢;)S7 —
— 2 cosh(2¢;) (sinh? € cosh?  cosh® e; — cosh® £ sinh® ( sinh®¢;) I —
- %cosh(?sj) sinh?(2¢;)1 +
+ 2sinh(2¢;) (sinh € cosh ¢ cosh e + cosh € sinh ( sinh ¢) (e‘gSj_ + cosh(?sj)ees;r) +
+ 2sinh(2¢;) (sinh € cosh ¢ cosh e; — cosh € sinh ¢ sinh ¢;) (BOSJ-L + COSh(2€j)e_OSj_).
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5.5. THE SECOND FAMILY OF CONSERVED OPERATORS

On the other hand,

L~k =35)",,_,=
=—4 (sinh2 ¢ cosh? ¢ cosh? €+ cosh? € sinh? ¢ sinh? 5j) I+
+ 2 sinh(2§) sinh(2¢) sinh(2¢;)S7 —
— 2 cosh(2g)) (smh2 ¢ cosh? ¢ cosh? g — cosh® € sinh® ¢ sinh? 5]-) I—
— % cosh(2¢;) sinh?(2¢;)1 +
— 2sinh(2¢;) (sinh € cosh ¢ cosh e; — cosh € sinh ¢ sinh ¢;) (eeSJ?L + Cosh(25j)e_95j_) +
— 2sinh(2¢;) (sinh € cosh ¢ cosh e + cosh € sinh ( sinh ¢) (e_eSj_ + cosh(25j)605;-r).

Thus, we have

1
- - — N To(—¢ _ T _
sinh(2¢,) [Tz(g, ) 2(=Ek =) ‘9H—9}

= —4sinh(2§) sinh(2¢) S} +
+ 4 (sinh € cosh € cosh e 4 cosh € sinh ( sinh ¢/) (e’eSj_ + COSh(25j)€QS;_) +
+ 4 (sinh € cosh ( cosh e; — cosh § sinh ( sinh¢;) (eeSj+ + Cosh(2€j)e’95j’).

Using cosh(2¢;) + 1 = 2cosh®¢; and cosh(2¢;) — 1 = 2sinh®¢; we can simplify

1
—  IE k=) = Ty k= )T ]:
SiIlh(Qéj) 2(57 j) 2( &, j) |9,_)_,9

= —4sinh(2¢) sinh(2()S; +
+ 8sinh & cosh ¢ cosh® £j (605;_ + 6_03]-_) + 8 cosh € sinh ¢ sinh® £j (695;r — e_GSj_) .

Now it remains to consider the last term in 7;(€) + 7;(€):

Ts(e; )+T3( ‘ea 0,t——t,5+—s
=-8 cosh(25j) (sinh & cosh ¢ coshe; + cosh ¢ sinh ¢ sinh ;) 69
— 8 cosh(2¢;) (sinh € cosh ¢ cosh e — cosh ¢ sinh ( sinhe;) 6_05 +
+ 4 sinh(2¢;) (sinh € cosh ¢ sinh ¢ + cosh € sinh ( cosh ¢) 60
+ 4 sinh(2¢;) (sinh € cosh ¢ sinh e; — cosh € sinh { coshe;) 6_65 +
+ sinh(2§) sinh(2¢) S} =
= —8cosh(2¢;) sinh & cosh ¢ coshe; (eGSj+ + efeSj’) -
— 8 cosh(2¢;) cosh ¢ sinh ( sinhe; (e”SF — 6705]-7) +

J
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+ 4 sinh(2¢,) sinh € cosh  sinh ¢ (605;— + e_GSj—) +
+ 4 sinh(2¢;) cosh € sinh ¢ cosh ¢ (695;“ — e_eSj_) +
+ 4 sinh(2¢) sinh(2(¢).S% =
= —4sinh € cosh ¢ (2 cosh(2¢;) coshe; — sinh(2¢;) sinh¢;) (6‘95;-r + e*GSj’) —

— 4 cosh & sinh ¢ (2 cosh(2¢;) sinhe; — sinh(2¢;) coshe;) (695;r - 6795;) +
+ 4 sinh(2€) sinh(2¢) S}

It is easy to see that
2 cosh(2¢;) cosh g; — sinh(2¢;) sinhe; = 2 cosh® ¢,
2 cosh(2¢;) sinh ; — sinh(2¢;) coshe; = 2sinh® ;.

Thus, we obtain

. . 1 - . . .
T3(€j) + T3(_€j)T‘0>—>—6,tb—>—t,5|—>—s + _Sinh(2€j) |:T2(€7 k= .]) - T2<_57 k= J)T‘QH—G} - 0’

from which follows that 7;(£) + 7;(€) = 0. O

5.6 A special case

Note that our construction depends on 9 parameters in total coming from the ex-
pansion . We have freedom to adjust these parameters in order to obtain different
constructions. In this section we consider one interesting special case when £ = ( = 0.
Then the conserved operators reduce to the following (we have omitted the constant

term for simplicity):

L . 2
Z sinh”(2¢;) _ _ 2 qz

L . 2
sinh (2€j) 20 —20 o— o — zQz
+ kééj SlIlh(éT]——l—éTk) (6 S;FS; +e Sj Sk — 2COSh(€j + Ek)Sj Sk:) +

+ 2sinh(2¢;) ((Cz + B) coshe;(e? ST+ e70S7) + (v + 0) sinhe;(e”Sf — e70S;) —

—(t—s) sinh(28j)Sj> .
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Define 77 = m Then utilising

sinh(2¢ey)
sinh(e; — ei) sinh(e; + )

coth(e; — e) — coth(e; + ;) =

we can rewrite

L .
R . ) B
J o sinh(g; —eg) * 7 F J Tk

L .
sinh(2¢;) 200+ a+ o ,—200— Q-
+§Sinh(€j+gk) (e*SFSf +e78757) +

sinh(2¢;) sinh(2e) (5.8)
2 ) SzSk
* Z sinh(g; — &) sinh(g; + &) 7 * T

J J

+ 2((a + [3) cosh q(eeS;r + e’eS;) + (v 4 d)sinhe;(e? ST —e?57) —
—(t—s) sinh(25j)S;>.

Let us look at this expression more closely. The terms with Sj Sy +5; S, S35 and
S% are analogous to the ones we had in the diagonal case . The linear terms with
S;T and S; are analogous to the extra terms in (4.10). But now we also have a term
e?STSE+e72S7 S, , which is essentially different from all other terms. Thus, conserved
operators are neither equivalent to those obtained in the rational case (4.10) nor to
those obtained in the diagonal case (|3.16)).

Remark 5.5. Note that, since we have set ( = 0, we cannot take the diagonal limit

anymore from the expression (@ (recall that the diagonal limit is taken by multiplying
by €% and sending ( — —00).

Remark 5.6. If we additionally set 0 = s =t = 0 the expression (@ will reduce to

c ) L )
. sinh(2¢; _ B sinh(2e o
Tj:E _;J))(SfSk%—SjS,j)—l—E ;j))(SjS,j—i—SjSk)—O—

— sinh(e; — e — sinh(e; + e

sinh(2¢;) sinh(2¢y,)
2 J S2SE
N Z sinh(g; — ;) sinh(g; +¢5) 7 * N

J

+ 2((a + ) coshe; (S} 4 S;7) + (v + 0) sinh g (S} — S._)).

We notice that the structure is similar to that of the conserved operators for the elliptic
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5.6. A SPECIAL CASE

Gaudin system [ED15]

1 +q- - o+
e (S3Sy +S787) +

R; = Zl—sn —zk)(SjS;+S;S,€_)+

en(z; — z) dn(z; — 2

+ k)SjS,j ,

sn(z; — 2i)
where sn(z), cn(z), dn(z) are the doubly periodic elliptic Jacobi functions of modulus k.

In particular, both expressions contain the term S;TSI;" + 575 -

Now let us construct a Hamiltonian from these conserved operators, like we did for

the rational case in Section [£.2.4l Consider
H = ZT* ) DL NP
perlrwy sinh(e; —eg) * 7 k gk

L L
+y Z _sinh(2e;) ( WG 4+ e S S) +
=1 k#

- sinh(e; + ;)

.

L
+22 < a+ ) coshe,(e 65+ +eST) + (v +6) sinhaj(eeS;r — e_eSj_) —

J
j=1

—(t—s) sinh(25j)Sj).

Writing it in the symmetric form we obtain

L : :
H:Z Z ( sinh(2e;)  sinh(2ey) > (SPSp +5-57) +

Pl sinh(e; —e;)  sinh(e; — )

L ¢ : .
sinh(2¢,) sinh(2ey,) 20 e a—
+ E E ( 4 (SIS +e7579,) +

sinh(e; +¢e)  sinh(e; +¢)

=1 k=j+1
. (5.9)
2(a+B) Z coshe;(e"ST +e7"57) +
j=1
C L
2(y+9) Z sinhe;(e’ S —e™57) = 2(t — s) Z sinh(2e;)57.
j=1 j=1

This has a similar structure to the Hamiltonian (4.11]), but contains the additional interac-
tion terms S;“S,j and S; 5, . These interactions terms are not so natural for interpretation
as a fermionic model, as was described by (4.12)). Nonetheless there may be other contexts

for which (5.9)) provides a potential physical model.
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5.7 Summary

In this chapter we have investigated the open, trigonometric Richardson—-Gaudin model
from the BQISM with off-diagonal K-matrices. We have checked that the diagonal and
rational limits agree with the constructions discussed in previous chapters. We have
calculated the conserved operators in the quasi-classical limit and proved that, like
in all previous cases, the second family is equivalent to the first one. The difficulty in this
case is that the expressions 17, T5, T3 for the traces in are quite cumbersome and
hard to analyse. On the other hand, we have freedom of adjusting parameters to obtain

different constructions as restrictions of the general one.

We have considered one special case obtained by setting ¢ = ¢ = 0. This leads to
the conserved operators . This expression is essentially different from the diagonal
and the rational cases, which we considered previously. In fact, due to the
way in which we restricted our parameters, it is no longer possible to take the diago-
nal limit of (see Remark [5.5)). In Remark we notice certain similarity of
with the conserved operators for the elliptic Gaudin model. This suggests an equivalence
between the trigonometric boundary construction and elliptic periodic construction, sim-
ilar to the connection between the rational boundary construction and the trigonometric
twisted-periodic construction, which we established previously. Further investigation is
required to explore this connection. Finally, we have constructed a Hamiltonian as a

linear combination of the conserved operators.
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CHAPTER 6

Some open questions about the bosonic Lax

operator

So far in this thesis we have studied models based on the spin-1/2 Lax operator,
trigonometric and rational (2.18). In this Chapter we venture into new territory
and consider the bosonic Lax operator below, which can be applied to a range
of physical models, including the two-site Bose-Hubbard model for quantum tunneling
[ZLMGO03, LHOG, LETS06]. First of all, in Section[6.1 we attempt to include the boundary
into the quantum tunneling model by applying the BQISM construction introduced in
Section It turns out that this does not increase the number of independent conserved
operators. Expanding the transfer matrix in powers of the spectral parameter u yields

only one non-trivial conserved operator.

Next, in Section [6.2] we turn to the case of the g-deformed bosonic Lax operator ((6.9)
below). Note that for the trigonometric spin-1/2 Lax operator (2.17)) the rational and the

quasi-classicall| limits are well-defined and commute. On the one hand, the quasi-classical
limit of the rational limit (2.18)) gives

Sz ST
(3 %)
On the other hand, first taking the quasi-classical limit (2.24])

Sj coshu Sj_
Sj —S7 coshu ’

By the quasi-classical limit we mean, as before, the first non-trivial coefficient in the expansion in n
asn — 0.
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6.1. QUANTUM TUNNELING MODEL

and then the rational limit gives the same result. The situation turns out to be different
for the g-deformed bosonic Lax operator . Neither the rational nor the quasi-classical
limit is well-defined in this case. We can modify the Lax operator to make them well-
defined, but the limits do not commute. Next, in Section [6.3] we look at the rational
and quasi-classical limits for the BAE and we confirm that these limits do not commute.
Finally, in Section we try to overcome this issue by considering a specific monodromy
matrix (6.27)) instead of the Lax operator. Both rational and the quasi-classical limits are
defined for this monodromy matrix, but other technical issues arise. We discuss several

directions for future research involving the bosonic Lax operator.

6.1 Quantum tunneling model

6.1.1 Periodic case

First of all let us review the quantum tunneling model (without boundary) [LHOG,
LETS06]. It can be described by the two-site Bose-Hubbard Hamiltonian

k 1 £

H = 2 (Ny = No)* = S (Ny = Na) = o (blbz + bib}). (6.1)

where b; and b; (j = 1,2) are the bosonic creation and annihilation operators satisfying
[, 0] = 6, [bs,b] = [bf, b}] =0,
and NV; = b;bj are the corresponding number operators, k,& € C are the coupling con-

stants.

In order to merge this model into QISM formalism, we start with the rational R-matrix
(2.3) and consider the following Lax operator:

L(u) = (6.2)

(1+nu)l +1m°N nb
nbt I)

It is an operator in End(V ® W), where V = C?, as before, and W is a representation
space for the bosonic algebra (note that it has to be infinite-dimensional). It is easy to
check that the RLL relation (£2.6]) is satisfied.
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6.1. QUANTUM TUNNELING MODEL

Consider the monodromy matrix (2.7) with v =0 and £ = 2
T(u) = L1<U, — 81)L2<U, — 82).

Note that we are free to shift the spectral parameter in the Lax operator without the loss
of generality. Thus, we can make it more symmetric by setting e; = n~'—w, g, = 14w,
where w € C. It is also convenient to rescale the monodromy matrix by 2. Finally, the

monodromy matrix for the quantum tunneling model is given by
T(uw)=n2Li(u—n"+wlyu—n"—w). (6.3)

It is an operator in End(V ® Wy ® W), where W, and W, are two representation spaces
of the bosonic algebra. One can write (6.3)) as an operator valued 2 x 2-matrix in the

auxiliary space V:

with the entries

Au) = (u? — W) +nuN + 1 NiNy — nw(Ny — Ny) + bybl,
B(u) = (u +w 4+ nNy)bs + n by,
C(u) = b} (u — w +nNa) + 7~ 'b,

(u) =10

D(u) = blby +n721.
Thus, the transfer matrix ¢(u) = A(u) + D(u) is given by
t(u) = ” Ny Ny — nw(Ny — Np) + bib} + blby + (u® — w® + 17771 (6.4)

The Hamiltonian (6.1)) for the quantum tunneling model is constructed as follows from

the transfer matrix (6.4)):

_ ¢ 2 -2 2 U
H__§ t(u) + (W —n —U)I—U’LLN—ZN

6.1.2 Boundary case

Now let us include the boundary based on the BQISM construction described in Sec-
tion 2.4 The rational R-matrix (2.3 satisfies the reflection equations (2.32) with the
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6.1. QUANTUM TUNNELING MODEL

rational diagonal K-matrices given by

. (& +tu 0 N R T 0
K (u)-( 0 f_—U>’ K (u)-( 0 §+—U—77>' (6.5)

Remark 6.1. These are obtained as a rational limit from the trigonometric diagonal

matrices and . Note that here we do not perform the shift u — u—n/2 as
we did when we considered the spin-1/2 Lax operator.

Let us consider the following double-row monodromy matrix, acting in V ® W; @ Wy:

Tu)=n2Li(u—n"4+w)lo(u—n"—w) K (u) x
X (La(—u—n"" —w) (Li(—u—n" +w) ",

and the corresponding transfer matrix
tu) = tr(K* (u)T(u)), (6.6)

where the trace is taken in the auxiliary space V.

We would like to write it out explicitly, similarly to (6.4). This requires more effort

than in the periodic case. First of all, let us calculate the inverse (L(u))™":

1 I —nb
(L(w))™" = T+mnu—n? (—77()T (1+nu— :)72)1 + nQN) '
Thus, the factor in the transfer matrix coming from the inverse Lax operators is
L+n(—u—n"—w) =)L +n(—u—n" +w) = n*) =n*((u+n)? - w?).
It is convenient to rescale the transfer matrix as follows:

t(u) = ((u+n)* = w’)t(u).

Denote
Ai(u) Bi(u)\ o O o — 1! — o
<Cl(u) D1(u)> - Ll(u o )L2( ! )’
As(u)  Ba(u) _ 2 _ 2 L u—nt Ly —n ) =
(Cz(u) DM) = ((wn)f =) (L) (u = =) (L) u o w) =



6.1. QUANTUM TUNNELING MODEL

_ 2 1 —nby
= T 2 2 X
—nby  (—nu —nw —n*)I +n*N;
% I —T]bg
—nbl (nu —nw — )T + 1Ny )

_ Ay(w) By(w)\ ., (Ax(u) Ba(u)
Hu) = tr <K+(U) <01<u> Dl<u>>K (u) (@(u) D2<u>))’

or, substituting the K-matrices (/6.5),

so that

t(u) = (€ +u+n)(§ +u)Ai(u)Az(u) + (€ +u+n)(§ — w)Bi(u)Co(u) +

(6.7)
+ (€7 —u—=n)(§ +u)Ci(u)Ba(u) + (€ —u—n) (€ —u)Di(u)Da(u).

From Section [6.1.1] we have

(u)
Bi(u) = (u+w+nNi)by + by,
Ci(u) = b} (u — w +nNy) +17'b,
D1 (u) = b-{bg + 77_2]

Ay(u) = biby + 0721,

By(u) = (u+1—w—nNi)by — 0 by,

Ca(u) = bl (u+n+w—nNy) —n'bl,

Dy(u) = ((u+n)* = w)I — n(u+n)N + 17’ Ni Ny — qw(Ny — Na) + bybl.

Thus, one can see that (6.7)) is a 4th order polynomial in u. Let us calculate it explicitly.

We will use the bosonic commutation relations
bib=N, bb'=N+1, b'N = (N —1)b', bN = (N +I)b.
Let start by expanding the terms

Ay (u)Az(u) = [(u2 — W) +nuN + 02NNy — nw(N; — Ny) + blbg} [bibz n 77—2]] _
= u’ <bib2 + 7772[) +u ('ONbJTJh + UﬁlN) — wW?blby — w2 +

+ 7’}2N1N2bJ{b2 — nw(Nl — Ng)bibg -+ 2N1N2 + N2 — n_lw(Nl — NQ) +
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6.1. QUANTUM TUNNELING MODEL

+ 072y},
By (u)Cy(u) = [(u +w + nNp)by + n_lbl] [bi(u +n+w—nNy) — n_lbg} =
— by + u <2wb§b2 4 (N — No)biby + 77 (N — NQ)) +w2bby +
+ nw(Ny — No)blby + 97 w(Ny — No) — > Ny Noblby — 2N1 Ny — N, +
+ 1 — 0~ 2byb},
Cy(u) By(u) = [b](u = +nNo) + 578 | (- — w0 = M)y =70 | =
= u2bby + u (2(n — W)bby — p(Ny — N)biby — 7L (N, — NQ)) +
+ (w? = 20m)biby 4+ nw(Ny — Ny)blby + 7 w(Ny — No) — n? Ny Nyblby +
+ 202 Noblby — 2N Ny + Ny — 17201},
Dy (u) Da(u) = [bfba + 721
x [((u )2 — Wi — n(u+1)N + 72N Ny — nw(Ny — Na) + blb;] -
— (b}b2 n n—21> tu (znbm 2 — pNbiby — n‘1N> _
— (w? = 20w)biby — P Nblby — 72T + I + 2NNy — Ny + 72Ny Nobl by +
+ (17 = nw)(Ny = Na)blby — 7 'w(Ny — Ny) + 17 2b; ).

Then,

€ +u+n)(€ +u)di(u)da(u) =
_— [b{b2 + n’zl} +
+ud [anin T N 4 (€ )by 4 (€T + €2 4 pblby + 7| +
+u? [(5+ + & MNbby + (€8 + &) N + 1P Nblby + N — w®blby — w1 +
+ 72Ny Noblby — nw(Ny — No)blby + 2N1 Ny + Ny — 7 w(Ny — Na) + 17 2b1b}, +
T+ ERETBby + € mblby + €M T 4 €y |+
+u [(5+ + & ) (—wbiby — w’n T + 1P NiNoblby — nw(Ny — Ny)bibs +
+2NiN2 + Ny — 7 w(Ny = No) + 07 2bibh) + €76 nNblby + € 1P Nbibs +
+ETETINFEN| +
+ (€76 ) (—Pblby — P+ P Ny Noblby — o (Ny = NaJbjby + 2Ni Ny +

+ Ny — 7 'w(Ny — Np) + 77_25153)] ,
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6.1. QUANTUM TUNNELING MODEL

" +u+n)(E —u)Bi(u)Cy(u) =
=yt [ — bJ{bg] +
ol [ — 2wbtby — Ny — No)blby — 7 (Ny — No) + (6~ — €%)blby — nb{bQ] +
+u? [2(5_ — EN)wblby — 2nwbibs + (€7 — EN)n(Ny — Na)biba — n*(Ny — Na)blby +
+ (& =& N = Ny) = (N1 = N2) — w?blby — nuw(Ny — No)blby —
— 7 W(Ny — Ny) 4+ 92Ny Nobiby + 2N1 Ny + Ny — I + 17 2by bl + £ blby +
+ ng*b{bQ} +
+u [(5— — et ) (Wb + w(Ny — No)bibs + 1 tw(Ny — Na) — 52Ny Nablbs —
— QN1 Ny — Ny + T — 7 2bybh) + 267 whlby + 26 nwblby + 6 n(Ny — Ny)bliby +
+ 02 (N1 — No)bibo + 7€ 0 (Ny — No) + & (N1 — Vo) | +
+ [(§+§7 +0E7) (W biba + nw(Ny — Na)blby + 07 w(Ny — Np) — 1 N1 Nablby —

— 2N1N2 — N2 + I — n_leb;) s

(€ —u—n)(€ +u)Ci(u)Ba(u) =
=t [ — bJ{bZ] +
| = 2(n — w)blby + 0Ny = Np)blb + 77 (N = No) + (€7 = €)bby — mbla] +
+u? [2<5+ — &) (n = w)blby — 2n(n — w)blby — (£ — £ )n(Ny — Na)blby +
+ 1P (Ny = Na)blby — (67 =€) (N1 — No) + (N1 — Ny) — (w® — 2wn)blby —
— nw(Ny — No)blby — 7 w(Ny — Na) + 2Ny Noblby — 202 Noblby + 2N, N, —
— Ny + 172010}, + €€l by — nETblby | +
+u| (€ =& —n)((@® — 2wn)blby + nw(Ny — Na)blby + 17 w(Ny — Ny) —
— 2Ny Noblby + 202 Noblby — 2Ny Ny + Ny — 572bybh) 4 2676 (17 — w)blby —
= 20€ () = w)biby — E7E (N1 — No)biby + 1126~ (N1 — Na)bibs —
— e Ny — No) + € (N — Ny) | +
+ (€7 =g ) (w” = 2wn)blby + nw(Ny — Na)bibe + 0~ 'w(Ny — Ny) —

Ny Nablby + 202 Nablby — 2N, Ny + Ny — n’lebg)],

118



6.1. QUANTUM TUNNELING MODEL

(" —u—=n)(§ —u)Di(u)Dy(u) =
=u! |:bJ{b2 + 77_21] +
+u®20bibs + 2071 — gNBIby — N — (+ + €7 )blby + yblby —
— (€ T
+u?| = 2(€F + € pblby + 20°00by — 26 + € )y + 20 + (€5 + € )yNblby —
o PNbIby 4+ (€8 + ) !N = N — (w? — 2nw)blby — n?Nblby — n~ 2wl + I +
+ 2Ny Ny — Ny + 7 Ny Noblby + (77 — nw)(Ny — No)biby — 7 'w(Ny — No) +
+ 0 2bibh + E5ETbIby — nETblby + ETETEL -7 | +

| = (€ +€ = n)(=(w? = 2mw)blby — P NBlb — WP+ T+ 2NN, = N, +

+ ?72N1N2b]£b2 -+ (772 — UW)(Nl — Ng)bibg — 7”]71(,U(N1 - Ng) + 7772b1b£) +
+2nE T ETbIby — 20P€Tbiby + 277N ET — 267 — nETETND by + 126" Nb{by —
—n TN +EN| +

+ [(5+g— — € ) (—(w? = 2nw)blby — ?Nblby — 1 2w?T 4+ I + 2N; Ny — N, +

PNy Nobiby + (77 — nw)(Ny — Na)blby — n7 w(Ny — No) + 7 2b1bh) |-
Substituting these into we obtain the final result
t(u) = 202 Tu* + dn ' Tu® + Fu?® + n(F — 20)u + 2676 (1 — w21,
where

F = [4(Ny = 1) Nab{bs | +
7| = ANy = No)blby + 46 Nyblbs -+ 46" Noblb, -+
+ dwblby — 4¢7blb]| +
+ [ 4y + (€ — €1 )biby + AETEbIby + SNLN, + 21} +
bt [ —4u(Ny — Ny) + 46Ny +4EVN, — 2(6" + 5*)] +
o [4b1b; yogte - 2w2] .

Thus, we come to the conclusion that, although by including the boundary we have

doubled the degree of the transfer matrix as a polynomial in u, we still obtain only one
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6.2. THE Q-DEFORMED BOSONIC LAX OPERATOR

non-trivial conserved operator F. So, as in the case of Richardson—-Gaudin models (see
Propositions , and , including the boundary does not lead to increasing the
number of independent conserved quantities. Since the bosonic Lax operator has
not fulfilled our expectations of obtaining something more interesting in the boundary

case, we will now look at the ¢g-deformed bosonic Lax operator for the rest of this chapter.

6.2 The g-deformed bosonic Lax operator

In this section we will investigate the g-deformed verision of the bosonic model de-
scribed in Section [6.1.1] Let us start with the trigonometric R-matrix (2.2)). Denoting

A=¢" g=¢e"?

we can rewrite it as

A2 — A lg? 0 0 0
1 0 A=t ¢?—q? 0
R(\) = A2 — \lg—2 0 P—q? A=\ 0 (6.8)
0 0 0 A2 — N lg2

The g-deformed bosonic Lax operator was originally introduced in [KunO7a]. We will use
a slightly modified form, as in [DILZ11]:

L(/\) B )\q2N+1 _ A71q72N71 ((]4 _ q74)1/2bq (6 9)
- (q4 _ q—4)1/2bj] /\q—2N—1 + )\—1q2N+1 ’ )

where the g-boson operators b, bg and N satisfy ([Mac89, Bie89|)

FPON+D 4 20N+

¢ +q?

[bg, bi] =

9 Yq

, [bg, N] = by, [b], N] = —b].

q
Note that when ¢ — 1, b, and bg become the usual bosonic destruction and creation
operators b and b satisfying [b,b'] = I.

The Lax operator given by is an operator in End(V ® W), where W is a repre-
sentation space for the ¢g-boson algebra (infinite-dimensional). One can check that
satisfies the RLL relation (2.6) in End(V ® V ® W) together with the R-matrix (6.§),
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6.2. THE Q-DEFORMED BOSONIC LAX OPERATOR

which in the new variables takes the form

Ria(A/ 1) La(A) La(p) = Lo(p) Lr(A) Ria (M ). (6.10)

The problem with the Lax operator is that we cannot directly take the rational or

the quasi-classical limit from it, as we did for the spin-1/2 Lax operator (2.17)).

e To be able to take the rational limit we need the Lax operator to satisfy
L()\>’q:1,)\:1 =0, (6.11)

but for we have L(A)|,_, ,_, = diag(0,2).

e To be able to take the quasi-classical limit we need

LV, 1, (6.12)

q

but here we have L(\)| _, = diag(A — A", A+ A71).

|q:1

The good news is that we can modify the Lax operator without violating (6.10) to
make conditions (6.11)), (6.12) satisfied. Obviously, we can rescale it and make a change

of variables, but we can also make a following transform:
L(\) — AL(\)B, (6.13)
where A, B € End(V) satisfy

Ri3(N)A1 Ay = Ay A Rip(N),

(6.14)
RlQ()\)BlBQ = BgBlng(A).

Remark 6.2. In the following we will only consider A and B diagonal, in which case the
conditions are automatically satisfied for the solution . For general values of
the deformation parameter q, diagonal solutions of are the most general. However,

for the rational solution ([2.3), all A, B € End(V) satisfy .
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6.2. THE Q-DEFORMED BOSONIC LAX OPERATOR

6.2.1 Rational limit

Consider the transform (6.13)) with A = B = diag (1, (¢* — q_4)1/2):

1 0 1 0

The modified Lax operator, which still satisfies (6.10)), is now of the form

AN+ _ )\ 1 -2N-1 4 _ N
Loy = ¢ (g g )by e (6.15)
(¢* — q—4>b:[1 (¢* — ¢ (NG 2N=1 4 A~1g2N+1)
Note that now the condition (6.11)) for taking the rational limit is satisfied. To take the
rational limit we introduce an additional parameter v:
A=el e g=e"t s 2
divide (/6.15]) by v and consider the expansion as ¥ — 0. We have

e =1+vu+0W?), " =14wvn/2+ O,

and, hence,
¢ —q " =dp+ O,

AN XN = 2y + (2N + 1) + O(V?),
(q4 _ q74)()\q72N71 + A71q2N+1) — 8771/ 4 O(VQ).
Thus, the rational limit of (6.15) gives

, [2u+n2N +1) 4nb
L(u) = < it 877> : (6.16)

Note that we cannot directly take the quasi-classical limit of (6.16]), because L(u)’[,_, is

not proportional to I, but we can easily fix it by the following transformationﬂ:

, o Lfepr 0 (@)Y 0
L(u) 1 ( 0 (277)1/2) L(u) ( 0 (277)1/2> ;

2Note that it is a twist, so it will lead to a scaling factor in the BAE, which we will discuss in Section

63
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6.2. THE Q-DEFORMED BOSONIC LAX OPERATOR

together with a variable change u + u —1/2 +n~'. This turns (6.16)) into the rational

bosonic Lax operator ([6.2))

1 I+7*N nb
L(u) = (L) 4" N-b)
nb' I

and the quasi-classical limit of (6.2)) gives

U(u) = (; 3) : (6.17)

Thus, we worked out how to take first the rational limit and then the quasi-classical limit
of (6.9). Now let us try to take the limits in the different order.

6.2.2 Quasi-classical limit

For taking the quasi-classical limit we modify the the Lax operator as follows.
Consider the mapping
L) = (¢" = )LV

together with the change of variable (q4 — q_4)1/ 2\ — \. The modified Lax operator,
which still satisfies (2.6)), is now of the form

LY = R (e B DA (q" —a7")bq (6.18)
o (q4 _ q_4)bT )\q—QN—l + (q4 N q—4))\—1q2N+1 ) )
q

The condition (6.12)) for taking the quasi-classical limit is now satisfied. Asn — 0, we have
g=e"? =14 0% and ¢* — ¢4 = ¥ — ™% = 4y + O(1?). Thus, expanding (6.18) in
1 we obtain

AN +1/2) — 4x~! 4b

LN =M +1 ( " LN 41/2) - 4A_1)> +O(n%).

Let us make a change of variables A — 2v/2\. Then we obtain

L(N)" = 2V2X\I +2v2y (AN * 1\//25(2 -2 oW+ 1‘2& B )\_1))> +O(n?).
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The quasi-classical limit gives

1 ()\N F1/200 — A7) V2b )

N =5 V20! —(AN +1/2(A =171 (6.19)

It has no obvious rational limit, because

6()‘>|>\:1 = <\/];[bT fj;) # 0,

and it cannot be made so by a simple shift of (6.19) by a diagonal matrix.

Thus, the rational and quasi-classical limits do not commute for the Lax operator
. There is still a possibility that we just have not found a suitable transformation.
To check this, let us have a look at the BAE. The BAE do not depend on the basis, unlike

the Lax operator, so we are only allowed rescalings and variable changes.

6.3 Rational and quasi-classical limits of the Bethe

Ansatz Equations

Let us consider the BAE to check whether the rational and quasi-classical limits com-
mute there. In order to derive the BAE we apply the algebraic Bethe Ansatz for the
twisted-periodic QISM construction described in Section [2.2]

6.3.1 Rational limit
Starting with the Lax operator (6.15)) we construct the monodromy matrix as follows:
T()\)/ = Ll()\/CYl)/LQ()\/ag)/.

It is an operator in End(V ® W, ® W3). As usual, let us write it as a 2 x 2-matrix in the

O = AN B(A)
C(\) D))

auxiliary space V:
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6.3. RATIONAL AND QUASI-CLASSICAL LIMITS OF THE BETHE ANSATZ EQUATIONS

Let us calculate the diagonal entries of the monodromy matrix:

A a1 _on. A 02 _on,_ _
A()\)’ _ (a_1q2N1+1 _ qu 2N, 1) (a_2q2N2+1 _ 72(] 2N3 1> + (q4 —q 4)2bqlb(§2,

D(u)' = (¢* — ¢ *)?b} by +

_ )\ _ _ (03] )\ _ _ Qo
+ (q4 —q 4)2 g 2N1—-1 + _q2N1+1 g 2Ny—1 + _q2N2+1 )
aq A (6] A

In order to facilitate taking the rational limit let us rewrite these in terms of variables u

and 7. Recall that A = %, ¢ = €2 and assume oy = €', ay = €. Then we have

A(u)' = 4sinh (u — &1 + (N1 4+ 1/2)) sinh (u — €2 + n(No + 1/2)) + (2 sinh(277))2bq1bg2,
D(u)' = (2sinh(2n))}, by +
+ 4(2sinh(2n))* cosh (u — &1 — n(Ny 4+ 1/2)) cosh (u — g2 — n(Nz +1/2)).

Consider the action of A(u) and D(u) on the vacuum state [0) ®|0) (the state |0) in this
case is determined by the conditions N |0) = b]0) = 0):

A(u)'[0) ®10) = a(w)"|0) ® [0}, D(u)’[0) © |0) = d(u)"|0) ® |0),

where
a(u)" = 4sinh(u — &1 + n/2) sinh(u — &2 + n/2),
d(u)" = 4(2sinh(2n))? cosh(u — 1 — n/2) cosh(u — £5 — 1/2).

Thus, the BAE are given by (cf. (2.15))

sinh(vg — €1 + n/2) sinh(vg — e9 + 1/2) B ﬂ sinh(vy —v; — 1) (6.20)
(2sinh(27))2 cosh(vy, — &1 — 1/2) cosh(vy — e — 1/2) i sinh(vy, —v; + 1)’ _
Now, in the rational limit from (6.20]) we obtain
(v —er+n/2) (e —e2+1/2) _ Troe—v = (6.21)
1672 i Uk =Y +n

Let us also make a change of variables v +— v, — /2 +n"" in (6.21)), as we did for the
Lax operator in Section [6.2.1] Finally, we obtain the following BAE:

(L+n(ox — 1)) (L + (v —2)) _ ﬂ L R/ (6.22)

161 Pl
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6.3. RATIONAL AND QUASI-CLASSICAL LIMITS OF THE BETHE ANSATZ EQUATIONS

These agree with the BAE for the non-deformed bosonic Lax operator L(u) and the
twisted monodromy matrix T'(u) = MLy (u — &1) Ly (u — €5} where M = diag((4n)~", 4n).
Note that we cannot directly take the quasi-classical limit of , but if we consider the
monodromy matrix without the twist 7'(u) = Li(u — 1) La(u — €2), then the BAE are

Vg — vj —
(1+ (o — )1+ (v, — 22) = [[ ot (6.23)
- Uk — U5+
Jj#k
and the quasi-classical limit of the BAE (6.23)) is given by
AR
20y —&1— 2= =2 : 6.24
Up — €1 — E2 Z F— (6.24)
#k

6.3.2 Quasi-classical limit

Now let us first consider the quasi-classical limit and then the rational limit. Start
with the Lax operator (6.18) and construct the monodromy matrix as

T()\)” — Ll()\/Oél)”LQ()\/OéQ)” — <A()‘)” B()\>”> )

C()\)/l D(}\)/l
We have
A2 Qo Qq
A()\)// — q2(N1+N2+1) _ (q4 - q—4) _qQ(Nl—NQ) + _q2(N2_N1) +
100 aq (&%)
le%¥e]
+(¢* — q‘4)2_;2—2q_2(N1+N2+” +(¢" — ¢7*)?byibly,
2
D) = A q—2(N1+N2+1) 1 <q4 _ q_4) ﬂqz(Nl_Ng) 4 %qQ(Ng_Nl) i
109 %) &3]
oo
+ (q4 N —4)2%2(]2(N1+N2+1) + (q4 . q_4)2b21bq27

and the action on the vacuum state |0) ® |0) gives

A2 _ a1 Qg _4 20010
a(\)" = OWQQQ —(¢"'=q7" (Q—Q o)t (6" —a )=z

" A2 — _ « (67 _ a1
d(N)" = g+ (" —q" (a—;+—2) N (Vo R

[e51e%) (03] A2

3We include this twist to be consistent with the twist we performed on the Lax operator in Section

f21
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6.3. RATIONAL AND QUASI-CLASSICAL LIMITS OF THE BETHE ANSATZ EQUATIONS

Taking the quasi-classical expansion (using ¢* — ¢~* = 4n + O(n*)) we obtain

)\2 )\2 2 2
a(\)" = +n< —44 +a2) +0(n),
a1 109 Q100
)\2 )\2 2 2
a0y =2 (o -1t o),
a1 109 Q109

The BAE are given by

a(\)" ﬁ sinh(vg —v; — 1)

= . 6.25
d(N)" i sinh(vy — v; + 1) (6:25)
The left hand side of (6.25)) in the quasi-classical expansion gives
a(\)" N+ 7]()\2 —4(cd + a3)) PP ) )
= =142 (1—4x2(a? +ad)) + O(?).
A"~ N = (02— 4(a? + a2)) n( (0 + 03)) + O0)
In terms of variables u, 1, €2 we have
AN (0f + a3) = de > (e + €72) .
The quasi-classical expansion of right hand side of (6.25) is, as before (cf. [2.3.1]),
al sinh(vgy —v; — 1) il 5
H . :1—2anoth(vk—vi)+(9(n ).
oy sin (v —v; + 1) o
Thus, the quasi-classical expansion of the BAE (6.25]) gives
N
1 —de ™% (e +e°2) = — Z coth(vy — vj). (6.26)

i#k

Let us try to take the rational limit from here. In order to eliminate the constant term
in the rational limit of the left hand side consider a change of variables v, +— v;, + In V8.
Then

1
1 o 46_2vk 6251 + 6252 — 1 o _e—2vk 6251 + 6252 )
(¢ ) o 1= e (e 4 )
Now introduce the rational parameter v and consider the Taylor expansion as v — 0:

1— %ezm”“ (et ™) =1 — %(1 —2vup + O(1?)) (2 + 2vey + 2vey + O(V7)) =

= I/(2Uk — &1 — 82) + O(VZ).
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On the right hand side we have

1 v(v, — v;)

coth (v(vy, — v;)) = + O(%).

v(v, — v;) 3

Thus, in the rational limit from ((6.26]) we obtain

1
O:ka—vj’

J7#k

which does not agree with (6.24]). In fact, it is easy to see that these equations have
no solution. We come to a conclusion that the rational and quasi-classical limits do not
commute on the level of the BAE.

6.4 An alternative Lax operator

In this section we consider an alternative approach to overcome technical difficulties in
taking the rational and quasi-classical limits, which we have encountered in this chapter
so far. The idea consists in taking a special form of the monodromy matrix instead of the

original Lax operator . This monodromy matrix is defined as follows

(6.27)

T(N) = Ly Lo(iA) = (gg; giii) ,

where L()) is the g-deformed Lax operator (6.9). Let us calculate its entries:
A(X) = (AGNHE Z \T1gm2Nim) (ANl A1) (gt q_4)bq1bj}2 _
— (A2q2(N1+N2+1) A2 Nt | 2(Ni—N2) q—2(N1—N2)) + (gt - q_4)bqlbj}2 _
=2 [sinh (2u + n(Ny 4+ Ny 4 1)) + sinh (n(N; — Nz))] + 2sinh(2n)bq1b22,
B(\) = (A@MH — A Tlg M) (¢t — a2, +
+ (¢ — 2, (iAg~Ne~t — A~ 1g2Netly =
= 2v/2(sinh(27)) /2 [sinh(u + (N + 1/2))bg + i sinh(u — n(Ny + 1 /2))bq1] :
CO\) = (¢* — q*4)1/2bj11 (IAGN7H! il
+ (A2l A2 (g q*4)1/2b22 _

= 2v/2(sinh(2n))*/? [Cosh(u —n(Ny + 1/2))b:;2 + i cosh(u + n(Ny + 1/2))b;1} :
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6.4. AN ALTERNATIVE LAX OPERATOR

D()\) — (q4 —q_4)b;1bq2+ ()\q 2N1—1 _|_>\ 1 2N1+1) (Z'/\q—QNQ 1 'L/\ 1 2N2+1) o
= ()\2(]—2(]\71+N2+1 )\ 2 2(N1+N2+1) + q2(N1—N2) o q—2(N1—N2)) + (q4 o q_4)bT1bq2 _
q

=2 [sinh (2u — n(Ny + Nz + 1)) + sinh (n(N; — NQ))] + ZSinh(Qn)bglqu.

Note that, unlike the Lax operator , the monodromy matrix (6.27]) satisfies both
conditions (6.11)) and (6.12) required for taking the rational and quasi-classical limits.

Let us see what we obtain in these limits.

6.4.1 Rational limit

In the rational limit we obtain

AT (u) = diw + 4n(i(Ny + 1/2) + bibh),

B (u) = 4n*?u(iby + by) + 41> (N1 + 1/2)by — iby (N, + 1/2)),
C(u) = 4n"?(ib] + bb),

D" (u) = diu — 4n(i(No + 1/2) — blb,).

We encounter the following technical difficulty in taking the quasi-classical limit of these
expressions: in the expressions above, in particular in B"(u) and C™(u), we have n'/?
as a leading power, but in the quasi-classical expansion of the R-matrix (2.3) 7 is the

leading power.

6.4.2 Quasi-classical limit

If we try to take the quasi-classical limit directly from (6.27)) above we encounter the

1/2

same problem. The expansions of B(\) and C(\) have '/* as the leading power:

AQ) =i P21+ 9Ny + Ny 1) = X721 = (N + Ny + 1)) +
(L n(N) = No)) = (1= (W) = Ny))| + 4l + O(P) =
=i(A* — A7?%) x
x {1 + # ((AQ + ANy + Na + 1) + 2(N; — Ny) — 4iblb£> + 0(772)} ;
B(A) = 202 [ A(L+n(Ny +1/2)) = X7 (1= n(N; + 1/2)) + O(?)| b2 +
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6.4. AN ALTERNATIVE LAX OPERATOR

+ 203 :A(l —n(Na+1/2)) = A1+ (N2 +1/2)) + O(”Q): b =

— onl/? [()\ Dby + by) + O+ AT (V) 4+ 1/2)bs — iby (N + 1/2)) + 0(772)] :

C(N) = 20283 A (14 n(Ns + 1/2)) + A7 (1 = n(Ns + 1/2)) + O(P) | +
+ 212 [;\(1 —p(Ny +1/2)) + A1+ n(Ny +1/2)) + O(ﬁ)]_b; ~
— 2072 | (0 + AL 0) + (= A7) (81 (N2 + 1/2) = (V) +1/2)0}) + OGr)|.
D) = i[X(1 = n(Ny + Ny +1)) = A2(1+ (V) + Np + 1)) +
(140N = No)) = (1= 9Ny = No)) | + 4nbfby + O(n?) =
=i(A =A%) x

X {1 + # (—()\2 + A (N, + Ny + 1) +2(Ny — Ny) — 4@'6162) + 0(772)] :

Further investigation is needed to better understand this problem.
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CHAPTER 7

Conclusions

7.1 Summary

The leitmotif of this thesis is: What does it mean for a quantum integrable model
to have a “boundary”? Sklyanin developed the BQISM method to include open spin
chains into the QISM formalism. While for spin chains there is an obvious geometric
interpretation of the boundary, for other models the situation is not as clear. We mainly
focused on answering this question for Richardson—Gaudin models obtained in the quasi-
classical limit from Sklyanin’s BQISM construction] We have investigated these models
systematically and explored the connections between them. Below we summarise the

main results that we have obtained.

e First of all, in Section we introduced a generalised version of Sklyanin’s BQISM
construction, which depends on a complex parameter p. This extends an approach
presented in [KZ94] and allows to interpolate between the boundary and twisted-
periodic constructions. Sklyanin’s boundary construction is obtained by setting
p = 0 and the twisted-periodic construction is obtained in the limit as p — oo.

We refer to this limit as the attenuated limit. The attenuated limits of various

constructions are considered in Sections [2.5.1} and [4.1]

e In Chapter |3 we investigated Richardson—Gaudin models obtained from the BQISM
with diagonal K-matrices, assuming the quasi-classical expansion of the bound-
ary parameters. We explored connections between the boundary and the twisted-
periodic constructions, both trigonometric and rational. We showed that the ra-

tional boundary construction is equivalent to the trigonometric twisted-periodic

'We also briefly consider the two-site Bose-Hubbard model with “boundary” in Section
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7.1. SUMMARY

construction. Also, the trigonometric boundary construction is equivalent to its ra-
tional limit. We demonstrated these equivalences on the level of the BAE, conserved
operators and their eigenvalues. Thus, we come to the conclusion that including di-
agonal boundary terms does not extend the class of Richardson—Gaudin models
beyond results obtained from the twisted-periodic construction. The connections

are summarised in Figure (3.2

Next, we considered the quasi-classical limit of the BQISM construction with off-
diagonal K-matrices. We started with the rational case in Chapter ] Unlike the
diagonal case, including off-diagonal boundary terms does lead to a new model.
In particular, by considering a linear combination of the conserved operators, we
were able to construct an integrable generalisation of the p + ¢p Hamiltonian with
extra terms , which can be interpreted as an interaction of the system with
its environment. Thus, we have a simple physical interpretation of the “boundary”
in this case. The external interaction terms break the u(1) symmetry of the model
and, thus, the algebraic Bethe Ansatz is not obviously applicable. We applied the
recently developed off-diagonal Bethe Ansatz method [WYCSIH| to calculate the
exact energy spectrum and derived the BAE whose roots parametrise it. Recently
Claeys et al [CBN16] presented the explicit wave function and computed exact

correlation functions for this model.

Finally, in Chapter 5| we considered the trigonometric off-diagonal case and calcu-
lated conserved operators obtained in the quasi-classical limit from this construction.
The expression for the conserved operators involves 9 free parameters, which gives us
freedom to adjust these parameters in order to construct different integrable models.
We considered one special case and discussed why conserved operators in this case
are in general not equivalent to any of those considered in previous chapters. In
fact, they have a similar form to conserved operators of the elliptic Gaudin model
[ED15], which suggests a possible connection with the elliptic case. Exploring this
connection requires further investigation. We have also constructed a Hamiltonian
in this special case, which has a similar form as the Hamiltonian from Chapter
[, but contains some extra interaction terms. We leave the interpretation of these

terms for future work.
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7.2 Future work

There are several directions for future research to continue the work started in this

thesis, which are summarised below.

e We observed that in all the above cases including a “boundary” does not increase
the number of independent conserved operators (although it doubles the degree of
the transfer matrix as the polynomial in ). In the case of Richardson-Gaudin
models the two families of conserved operators obtained in the quasi-classical limit
turn out to be equivalent (see Propositions and [5.4). The same happens in
the case of the two-site Bose-Hubbard model (see Section [6.1.2)). In the future, we

would like to explore this pattern further and check whether it is true in general.

e After studying the rational and trigonometric BQISM constructions the next natural
step is to consider the elliptic BQISM construction based on the elliptic R-matrix. It
would be interesting to investigate the elliptic Richardson—Gaudin model obtained
in the quasi-classical limit from the elliptic BQISM construction and establish its
trigonometric limit. Also, we would like to explore a possible connection between
the trigonometric boundary construction and elliptic periodic construction identified
in Remark similar to the connection between the rational boundary construc-
tion and the trigonometric twisted-periodic construction, which we have established

previously.

e We have observed that some results from this thesis hold not only for spin-1/2,
but for higher spins (see Remark [4.5)). It would be interesting to systematically
generalise our results to the higher spin case. Another possible generalisation goes

in the direction of considering higher rank algebras su(n) instead of su(2).

e In Chapter [6| we discussed several technical difficulties concerning the g-deformed
bosonic Lax operator. This opens various avenues for future research. In particular,
we would like to further investigate implications of the fact that the rational and
quasi-classical limits do not commute in this case. Furthermore, we would like
to apply the methods developed in this thesis to study spin-boson models and,
in particular, try to approach problems related to integrability of the Rabi model
[Bralll BZ15].
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